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Characteristics 

 
R. R. Read 

 
ABSTRACT 

 
The report develops and makes available programs 

that treat the support functions of a set of survivor 
distributions: Weibull, Gamma, and Lognormal. The issues 
of model characterization functions, maximum likelihood 
estimation, bias reduction, and censored samples are treated 
generally. The general material is made explicit for the 
distributions named. It features open code, allowing the 
user to pursue plans of his own. 
 

The paper also contains some items of broader 
interest. First, a technique is developed that offers 
substantial reduction in the dependence of the initialization 
values for the success of the Newton-Raphson iteration 
technique. Second, high-precision, numerical analysis 
techniques are developed for the parallel computation of 
several derivatives of the Incomplete Gamma function. 
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1. Introduction 
 
 Much has been written on life length distribution applications—especially those 
in the field of reliability. The first course textbooks usually cover the ground well, but the 
examples often are shallow because there are so few distributions that can readily be 
managed, supported only by the calculus. The computational aspects are extremely easy 
when dealing with the exponential distribution, and they become quite difficult when 
using other common distributions. This situation creates difficulties in the teaching of 
first courses, the writing of textbooks, and, of course, in the execution of research. The 
use of the exponential distribution becomes overworked and dull, and its sole use masks 
the dangers that can be encountered. 
 

The present report offers useful relief to these problems. Algorithms and S-Plus 
code are developed so that the user can explore on the computer the consequences of 
using the Weibull, Gamma, and Lognormal distributions. Also, a general mathematical 
structure is presented so that a programmer can extend and deal with other distribution 
families. 
 

At the same time, we are beginning to see products of this type from other 
software writers. The Splida system by Meeker and Alvarez has completed beta testing 
and has appeared on the market. This system appears to be very comprehensive. It is 
written in S-Plus and features a large number of specialized drop-down dialog menus. A 
product named Reliasoft is already on the market. It too requires that the user fill out 
dialog boxes. The present work is far less ambitious, but contains open S-Plus code that 
allows the user to deal directly with issues of his own choosing and to check the precision 
of his solutions. It contains a number of command line functions that a user can integrate 
into his own specialized problem-solving package. (Meeker offers to supply computer 
code upon request; it is not known whether this includes the supporting algorithmic 
analysis.) 
 

Attention is restricted to the continuous time life length variables. General 
formulae are developed for these. A first goal is to compute and graph five basic support 
functions, namely, 
 

f(t) =  probability density functions (pdf), 
S(t) =  survivor function, 
h(t) =  hazard function, 
H(t) =  cumulative hazard function, 
LL(t) =  expected residual life. 

 
The first two often are included in the standard statistical software packages. The 

others usually require the practitioner to exercise some calculus and programming. The 
user should be familiar with the shapes of these functions and how they vary from model 
to model. In fact, model selection is often a judgment call rather than a statistical 
exercise. In terms of these support functions, some model comparative graphing can be 
quite valuable. 
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Complete samples are those for which the testing process is not finished until all 
objects have realized their entire lifetimes. In these cases, the stock statistical methods are 
utilized. One usually calls upon maximum likelihood to serve for parameter estimation. 
These have well studied properties. They are not easy to find and often iterative methods 
are created for this purpose. Seldom are these available in the standard statistical software 
packages. The report contains examples of how one can generate such methods. The 
large sample theory for maximum likelihood estimators is well established and it is used 
to create confidence regions for the parameters. 
 

Generally, maximum likelihood estimators are known to be biased. This issue has 
not received great attention. The methods for dealing with it are difficult and the effects 
are not believed to be great, except possibly for small sample sizes. But the report does 
consider a first order bias reduction method and applies it to the models treated. At least 
the reader is allowed to view the nature of the problem. 
 

Recent times have seen the development of methods to manage censored life 
length data, i.e., data collection plans that do not collect full life length information on all 
subjects. We consider right-censored data only, i.e., each subject is either observed to 
expire or has survived beyond a known point. Plans that await a complete data set are 
often too expensive. The maximum likelihood point estimation schemes are available in 
concept, but the implementation is often intricate and requires special methods. The 
iteration functions utilized are advertised as requiring high quality initialization points. A 
method is proposed that appears to give substantial relief to this problem and shows great 
promise at this point in time. 
 

When dealing with the gamma distribution in the censored case, one must face the 
computation of the derivatives of the incomplete gamma function. Methods for 
accomplishing this are developed. 
 

The report is organized as follows. Section 2 contains the general mathematical 
structure for the support functions, for complete samples, for a bias reduction method and 
for censored samples. This is followed, in Section 3, by the presentation of some 
computations and graphs typical of the capabilities that are being supported. This part 
does much to illustrate the use of the programs and the kinds of issues that may be 
addressed. The reader who is well versed in the issues will find this chapter most useful 
as it identifies the programs and illustrates their use. Sections 4, 5, and 6 treat the 
mathematical details for the three popular distributions: Weibull, Gamma, and 
Lognormal, respectively. Explicit formulae are developed for the characterizing support 
functions, the treatment of complete samples with maximum likelihood, bias reduction, 
and methods for censored samples. 
 

Two data sets have been enlisted to test the programs in Section 3. The Lieblein 
and Zelen (1956) ball-bearing data is utilized for complete samples. It consists of 23 
failure times of ball bearings measured in millions of revolutions. It has been exploited 
by [Meeker and Escobar, p. 4] to illustrate the model-fitting problem. A similar use is 
presented in Section 3. The data are 
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BallB: 17.88  28.92   33.00  41.52  42.12  45.60   48.40   51.84   51.96   54.12   67.80 
           68.64  68.64   68.88  84.12  93.12  98.64 105.12 105.84 127.92 128.04 173.40 
 

A second data set was chosen to test the methods that involve censoring. It is the 
set of survival times for multiple myeloma patients from [Lawless, p. 337] consisting of 
48 complete lifetimes, x and 17 right-censored values, t. Both are measured in months. 
The data are 
 
myeloma: 
x:  1    1    2    2    2    3    5    5    6    6    6    6    7    7    7    9  11  11  11  11  11  13  14 
   15  16  16  17  17  18  19  19  24  25  26  32  35  37  41  42  51  52  54  58  66  67  88 
   89  92 
 
t:   4   4   7   7   8  12  11  12  13  16  19  19  28  41  53  57  77 

 
Fuller details of implementation of the methods are contained in five appendices. 

 
They treat specialized subjects and each contains supporting S-Plus listings. Their 
contents are: 
 

Appendix A. Asymptotic Expansions for the Polygamma Functions. 
 

Appendix B. Analysis for Computational Support of the Weibull Distribution. 
 

Appendix C. Implementation of the General Censored Data Estimation Scheme. 
 

Appendix D. Derivatives of the Incomplete Gamma Function. 
 

Appendix E. S-Plus Listings of Miscellaneous Code. 
 
The programs can be obtained in electronic form by contacting the author. 
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2. General Formula 
 

The specialized programs follow a general structure, which is presented here. A 
number of computational situations are envisioned. Only the continuous case is treated. 
First, we deal with important support functions used in reliability and lifetime analysis. 
This includes a visit to the optimal planned replacement policy formulae. Second, the 
basic maximum likelihood estimation procedures for complete samples is presented. This 
includes iteration schemes for finding the solution, the information matrix, and the 
construction of asymptotic confidence regions. This also includes the method for 
reducing the sensitivity of the initialization values. Third, the development of a general 
technique for bias reduction is considered. Fourth, the general structure for dealing with 
maximum likelihood estimation for right-censored samples is presented. 
 

Code is needed for the exploration of the properties of various models. 
Relationships among the various functions are summarized [Leemis, p. 55]. Those that 
are most useful in the present work are listed. A continuous life length random variable X 
has a probability density function, f(t) and a cumulative distribution function F(t). From 
these one can characterize others. 
 
2a. Model Characterization Functions 
 
The survivor function: 

 S(t)  =  
t

f (u)du
∞

∫   =  1 − F(t)  =  Pr{X ≥ t}.                                                     (2.1) 

 
The hazard function, age specific failure rate: 
 
 h(t)  =  f(t)/S(t)  =  H'(t).                                                                                     (2.2) 
 
The cumulative hazard function: 

 H(t)  =  
t

0
h(u)du∫   =  − ln[S(t)].                                                                        (2.3) 

 
The integrated survivor function: 

 SS(t)  =  
t

S(u)du
∞

∫ .                                                                                           (2.4) 

 
The mean residual life : 

LL(t)  =  
t

u f (u)du / S(t)
∞

∫   =  SS(t)/S(t)  =  E{X − t | X > t}.                          (2.5) 

 
2b. Cost Calculation of Planned Replacement Policies 
 

Let us examine the effect of model choice when a planned replacement policy is 
considered. Such policies can be advantageous when dealing with an IFR system and the 
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cost of a planned replacement is lower than the cost of replacing at failure. The structure 
of the calculation is developed in [Barlow and Proschan]. 
 

Let k > 0 be the cost of a planned replacement, but if the replacement must 
happen because of a device failure then an additional cost c is incurred to be added to k. 
Let Rn be the cost of the nth replacement, and Xn is the lifelength of the nth unit placed in 
service. The system { }Xn  is assumed to be i.i.d. The cost is random because it depends 
on the type of replacement. 
 
  Rn = k if Xn > t and Rn = k + c if Xn ≤ t.        (2.6) 
 
Now we can describe the cost for the interval (0, s]. 
 
  ∑=

)(

1
)( sN

jRsZ  
 
This cost is a random variable, but the long-term average cost stabilizes. That is 
 

  1

1

{ }( )
{ }

→
E RZ s

s E X
as s → ∞. 

 
The main formula for long-term average cost using replacement policy t, i.e., replace at 
age t, is 
 

∫
+

= t
dwwS

tcFktC

0
)(

)()( ,                                                                               (2.7) 

where S(w) is the survivor function of the distribution F. The denominator of this 
expression may also be computed using µ − SS(t) and µ  =  E{X}  =  SS(0). See [Barlow 
and Proschan, 1981] or [Prentice and Kalbfleisch]. 
 
2c. The Likelihood Equations and Solution Technique; Structural Overview 
 
 The structure of the likelihood function has different appearances depending upon 
whether the data are complete or censored. There are a few general points that apply to 
either case. These are presented first, followed by representations of how the details can 
change depending upon the two cases. The parameter θ may be a vector of several 
components. Let l (θ) be the likelihood function, and 
 
  L(θ)  =  log[ l (θ)]                                                                                   (2.8) 
 
be its logarithm. We are concerned with the smooth settings in which the maximum 
likelihood estimates are found using gradient methods. The partial derivative with respect 
to the individual members of θ, when the particular subscript(s) plays no immediate role 



 6

will be marked as Lθ; Lθθ; and 
1 2,L θ θ ; the latter case representing any pair of the mixed 

partial derivatives. 
 
The partial derivative of L with respect to θ has expected value equal to zero and 

the expected square of this quantity is the negative of the expected value of the second 
partial of the log likelihood. The requisite smoothness conditions for interchanging the 
expectation operation with the appropriate partial derivatives are presumed. 
 

The matrix {
i j

L θ θ } is known as the Hessian and the negative of its expected 
value is the (Fisher) information matrix. Call the former H, the latter nI0 (use I0 for the 
information in a single observation), and Lθ the vector of partials of the log likelihood. 
Often the system of equations Lθ  =  0 must be solved by iterative methods. This is done 
using a Newton-Raphson type technique. Two options are presented: 
 
 (k 1) (k) 1H L+ −

θθ = θ −      and     (k 1) (k) 1
0(nI ) L+ −

θθ = θ + .                                 (2.9) 
 
Termination of the iteration occurs when there is no change in the maximum value. Both 
methods require a good initialization, θ(0). To some, there appears to be empirical 
evidence to use the second choice, when feasible, but the calculation of I0 is often 
difficult. 
 
 Since convergence of the iteration function is sensitive to the initialization, θ(0), 
the author found relief from this problem by utilizing a golden section search along the 
segment (θ (k), θ (k+1)). Typically, the iteration steps over-swing the maximum in this 
direction, often by a factor of two and sometimes by a factor of 10. It can pay to seek a 
local maximum in this direction. The method is implemented as follows. Let 
 
 θ1  =  θ (k)   ; θ4  =  θ (k+1) 
            θ2  =  0.618 θ 1 + 0.382 θ 4                               (2.10) 
            θ3  =  0.382 θ 1 + 0.618 θ 4 
 
and compute L at these four points. If there is a single local maximum over the segment, 
then it can be found by an iterative scheme: 
 

If L(θ1) is the largest of the four, replace θ4 ← θ3 and return to (2.10) 
If L(θ4) is the largest of the four, replace θ1 ← θ2 and return to (2.10). 

 
Failing these, 
 
 If L(θ2) is smaller than L(θ 3), then make the replacement θ1 ← θ2 
            If L(θ2) is larger than L(θ 3), then make the replacement θ4 ← θ3 

 and return to (2.10). 
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Repeat the process until there is no change. Then go back to the Newton-Raphson 
type scheme and continue in a new direction. This golden section augmentation will slow 
when overly stringent convergence criteria are used. But is often preferable to the seeking 
of a better initialization. 
 
2d. Likelihood System; Complete Samples 
 
           Let X1, X2, ··· , Xn be a random sample of life length random variables each having 
pdf f(x; θ) and survivor function  S(t; θ). Note how the parameter θ is now included in 
the notation; it may be multidimensional. The likelihood function is expressed 
 

n
ii 1

lik( ) [f (x ; )]
=

θ = θ∏     and    n
ii 1

L log[f (x ; )]
=

= θ∑ .                       (2.11) 
 

The partial derivative of L, the log likelihood, with respect to θ has expected 
value equal to zero and that the expected square of this quantity is the negative of the 
expected value of the second partial of the log likelihood. The requisite smoothness 
conditions for interchanging the expectation operation with the requisite partial 
derivatives are presumed. The subscript θ is used to denote partial derivative, and the 
format aspects of the partial of the log likelihood take the appearance 
 

  n i
i 1

i

f (x ; )L
f (x ; )
θ

θ =

θ
=

θ∑                                                                             (2.12) 

 
and the second order partial derivatives 
 

     n 2i i
i 1

i i

f (x ; ) f (x ; )L { [ ] }
f (x ; ) f (x ; )
θθ θ

θθ =

θ θ
= −

θ θ∑ ,                                                   (2.13) 

 
where the double subscript θθ refers to a common component of the vector θ. Any mixed 
partial derivative of second order has the form 
 

  1 2 1 2

1 2

n i i i
2j 1

i i

f (x ; ) f (x ; )f (x ; )
L { }

f (x ; ) f (x ; )
θ θ θ θ

θ θ =

θ θ θ
= −

θ θ∑ .                          (2.14) 

 
One must develop these quantities for each specific model. Should the system of 
equations for the mle’s be nonlinear, one may use the iteration schemes described above. 
 

The negative expectation of 
1 2

{L }θ θ is nI0, where I0 is the single observation 
information matrix. A version of the multivariate central limit theorem says that 
 

1
0

ˆ( ) (0, )n MVN Iθ θ −− ≈ .                                                                    (2.15) 
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It follows that 
 
  2

0 ( )
ˆ ˆ( ) ( ) knIθ θ θ θ χ′− − ≈ , where k is the dimension of θ.                 (2.16) 

 
This distributional point will be exploited in order to find joint confidence ellipses for the 
parameters. 
 
Approximate joint confidence regions for the parameters can also be obtained using 
 
  G2  =  -2[L(θ ) − L(θ̂ )]  2

( )kχ≈                                                             (2.17) 
 
This too will be used for some comparisons. 
 
2e. Bias Reduction 
 
 Maximum likelihood estimates are known to be biased generally. It is appropriate 
to reduce this bias. The technique will be presented using the notation for complete 
samples. Explicit relevant formulae will be generated where the explicit models are 
discussed. The use of the technique under censored sampling follow these same ultimate 
formulae, but the censored case has a much more difficult likelihood function and the 
development of the requisite computational formulae must await another time. It does 
present a ripe area for application and study. 
 

This section expands upon the bias reduction analysis of mle estimates that 
appears in [Cox and Hinkley, p. 309]. The basic idea is to use a third order expansion of 
the log likelihood about the mle. The technique deals with a single component of the 
parameter vector and is expected to work best when the estimators of those components 
are not strongly correlated. 
 
            The log likelihood function L is a sum of n terms, where n is the sample size. 
Consider a single parameter θ. The score of an observation is the partial derivative (of 
one term) of the log likelihood with respect to θ. The score of the ith term (without 
subscript as it plays no role) to that sum will be called U; the 1st and 2nd partial 
derivatives will be denoted U' and U'', respectively. Use the dot subscript notation to 
denote summation over the n terms. Thus, 

 
2

2
2 3

f f f f f f fln(f )U ; U ' [ ] ; U '' 3 2[ ]
f f f f f f
θ θθ θ θθθ θθ θ θ∂

= = = − = − +
∂θ

                         (2.18) 

 
and the expansion may be expressed 
 

            0  =  2 1/ 2
p

1ˆ ˆ ˆU.( ) U.( ) ( )U.'( ) ( ) U.''( ) O (n )
2

−θ = θ + θ − θ θ + θ − θ θ +    (2.19) 
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Taking expectations through this expression, we obtain 
 

           21ˆ ˆ ˆE( )E{U.'( )} cov{ , U.'( )} E( ) E{U.''( )}
2

θ− θ θ + θ θ + θ − θ θ  

 

  2 1/ 21 ˆcov{( ) , U.''( )} O(n )
2

−+ θ − θ θ = .                                       (2.20) 

 
At this point introduce the notation, for a single observation, 
 
  ( ) r s

r, s ( ) E{[U ] [U '( )] }κ θ = θ θ ,                                                         (2.21) 
 
and to note that 
 
  1, 1 3, 0E{U ''( )} 3 ( ) ( )θ = − κ θ − κ θ                                        (2.22) 
 
and E{U.''( )θ is n times the above amount. 
 
In order to justify the above expression and what follows one should keep in mind that 
 

 0  =  f f fE( ) E( ) E( )
f f f
θ θθ θθθ= =  

 
and ˆcov( , U '( )) O(1/ n)θ θ =  and 2ˆcov[( ) U ''( )] o(1/ n)θ − θ θ = . 
 
Further, ( )E[U.'( ) n iθ = θ , where i(θ) is the information scalar (one by one matrix) 

and 2ˆE( ) 1/ n i( )θ − θ ≈ θ . 
 
 The bias function is b(θ)  =  ]ˆ[ θθ −E . Now let’s take the expectation of (2.17). 
 
  b(θ) ni(θ) + 1/(2 i(θ)) 1 1 3 0[ 3 ]− κ − κ   =  o(1/n) 
 
and this yields the approximation 
 

  b(θ)  ≅  1 1 3 0
2

3
2n i ( )
κ + κ

θ
                                                                (2.23) 

 
(This is at variance with [Cox and Hinkley, p. 310, Equation (35)]). 
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The bias reduction is executed by using )ˆ(θb . I.e., the reduced biased estimator is 
 
  ˆ ˆ( )bθ θ θ∗ = − .                                                                                       (2.24) 
 
2f. Likelihood System; Censored Samples 

 
Let X1, X2, ··· , Xn be a random sample of life length random variables having pdf 

f(x;θ) and survivor function, S(t ;θ ). 
 
Type I censoring. Testing of item i will stop at ti if the item has not failed by that time. 
 
Type II censoring. All testing stops when the rth item has failed, i.e., at X( r ). 
 
Let δi  =  1 if Xi is ≤ (it’s censoring time, Type I) ti or X(r) (for Type II)                     (2.25) 
               =  0 o.w. 
 
The likelihood function can be expressed in a common format for the two kinds of 
censoring, 
 

i i
n 1

i ii 1
lik( ) [f (x ; )] S(t ; )δ −δ

=
θ = θ θ∏                                                         (2.26) 

 
Our first goal is to go through the formalities of showing that the partial derivative 

of the log likelihood has expected value equal to zero and that the expected square of this 
quantity is the negative of the expected value of the second partial of the log likelihood. 
The requisite smoothness conditions for interchanging the expectation operation with the 
requisite partial derivatives are presumed. Let the logarithm of the likelihood function be 
 
              n

i i i ii 1
L( ) [ ln(f (x ; ) (1 ) ln(S(t ; )]

=
θ = δ θ + − δ θ∑ ,                                   (2.27) 

 
and using the subscript θ to denote partial derivative, the format aspects of the partial of 
the log likelihood take the appearance 
 

  n i i
i ii 1

i i

f (x ; ) S (t ; )L [ (1 ) ]
f (x ; ) S(t ; )
θ θ

θ =

θ θ
= δ + − δ

θ θ∑ ,                                            (2.28) 

 
and the second partial derivatives 
 

     n 2i i
ii 1

i i

f (x ; ) f (x ; )L { [ ] }
f (x ; ) f (x ; )
θθ θ

θθ =

θ θ
= δ −

θ θ∑  

 

    + n 2i i
ii 1

i i

S (t ; ) S (t ; )(1 ){ [ ] }
S(t ; ) S(t ; )
θθ θ

=

θ θ
− δ −

θ θ∑                         (2.29) 
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  1 2 1 2

1 2

n i i i
i 2j 1

i i

f (x ; ) f (x ; )f (x ; )
L [ ]

f (x ; ) f (x ; )
θ θ θ θ

θ θ =

θ θ θ
= δ −

θ θ∑  

 

        1 2 1 2n i i i
i 2j 1

i i

S (t ; ) S (t ; )S (t ; )
(1 )[ ]

S(t ; ) S (t ; )
θ θ θ θ

=

θ θ θ
+ − δ −

θ θ∑ .                    (2.30) 

 
The mle’s can be found by setting (2.28) equal to zero, and the Hessian can be computed 
from (2.29) and (2.30). 
 
The expected values of these quantities involve terms related to the form 
 

  ( )
t

0
f x ; dx S(t; ) 1θ + θ =∫ ,                                                                    (2.31) 

 
which when differentiated respect to θ, produce the useful structures 
 

                
t t

0 0
f (x ; )dx S (t ; ) 0; f (x ; ) 0θ θ θθθ + θ = θ =∫ ∫ .                                      (2.32) 

 
From this we formally show that the expected value of (2.28) is zero, and for  
Equation (2.29) we see that 
 

  n n2 2i i
i ii 1 i 1

i i

f (x ; ) S (t ; )E{L } E{ [ ] } E(1 )[ ]
f (x ; ) S(t ; )
θ θ

θθ = =

θ θ
− = δ + − δ

θ θ∑ ∑  

and 

  1 2 1 2

1 2

n ni i i i
i i2 2i 1 i 1

i i

f (x ; )f (x ; ) S (t ; )S (t ; )
E{L L } E{ } E(1 )

[f (x ; )] [S(t ; )]
θ θ θ θ

θ θ = =

θ θ θ θ
= δ + − δ

θ θ∑ ∑  

 
and  

1 2 1 2
E{L L } E{L }θ θ θ θ= − . 

 
The maximum likelihood estimates will be the same regardless of the type of censoring. 
However, the effect of censoring upon the information matrix and bias reduction 
methodology does change with the type of censoring. 
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3. Computational Studies 
 

This section is likely the most useful to the practitioner. It shows how to use the 
programs and suggests many kinds of exploratory computations and graphs. The contents 
are partitioned as follows. 
 

3a. Comparison between the Exponential and Lognormal distributions. 
3b. Comparison between the Weibull and Gamma distributions. 
3c. Comparison of planned replacement rules for several models. 
3d. Methods for dealing with the Weibull distribution; complete samples; bias 

reduction; censored samples. 
3e. Methods for dealing with the Gamma distribution; complete samples; bias 

reduction; censored samples. 
3f. Methods for dealing with the Lognormal distribution; complete samples; bias 

reduction; censored samples. 
 
3a. Comparison of the Exponential and Lognormal Models 

 
The exponential distribution is a favorite because of its simplicity. The lognormal 

distribution also appears, being derivable from fairly plausible assumptions about certain 
types of failure processes. [Breiman; Statistics, 1973, Houghton-Mifflin, p. 197] has 
drawn attention to the idea that these two distributions can be adequately fitted to some 
failure time data, and for small samples it is difficult to discriminate between the two. In 
this example, the chi square goodness of fit statistic (D) is 6.2 with 4 degrees of freedom 
for the exponential fit, estimated mean  =  41.1. On the other hand, the lognormal 
distribution produces a D value of 7.5, for µ  =  3.3 and σ  =  1.1. His point is that the chi 
squared procedure has little discrimination power, even for a sample of size 50. In most 
cases, the choice between the two can be resolved by comparing the two q-q plots. 
 

Figure 3.1 makes another comparison of the two distributions, this time using 
Exp(1) and Lognormal(0, 1). The density functions appear similar, but the other support 
function allows one to be more discriminating as to their properties. Generally, the 
lognormal hazard function has the shape of an inverted “U.” This is implausible for most 
situations. In spite of this unattractive feature, it has been used in a number of diverse 
situations. See [Lawless, p. 24]. 
 

Since the hazard function for the lognormal is below that of the exponential the 
former has a greater survivability and a longer residual life. 
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Figure 3.1 

Behavior of the Lognormal Model compared with the Exponential Model. 
 
3b. Comparison of the Weibull and Gamma Distribution Models 
 

The Weibull distribution is a common choice for a survival distribution, as is the 
gamma distribution. The former is the more popular, largely because the hazard function 
follows a power law; decreasing for the shape parameter α being less than one, and 
increasing for the parameter being more than one. The hazard function for the gamma 
law is also DFR (decreasing failure rate) for the shape parameter smaller than one and 
increasing (IFR) when it is larger than one; but for large values of the variate it 
approaches an asymptote. Thus, there is a serious choice to be made between these two 
laws even though their density functions are quite similar. They are both unimodal and 
skewed positively. It is difficult to discriminate between the two based on complete 
samples. The distinctions are in the tails. Some comparisons between the two follow. 
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Figure 3.2 

Comparison of the Weibull and Gamma Distribution Models; DFR Case. 
 

Figure 3.2 makes the comparison between the Weibull and gamma distributions in 
a decreasing failure rate case. The Weibull ( α = 0.75, β = 2) case was selected. A 
random sample of size 200 was simulated and the parameters for fitting a gamma (α, λ) 
distribution were estimated using maximum likelihood. The result is in the legend of 
Figure 3.2. The shape parameter α is unrelated to its counterpart for the Weibull 
distribution, but they share the same rule for discriminating between IFR and DFR. The 
parameter λ is called the rate parameter. 

 
Inspection of Figure 3.2 shows that it would be difficult to make the choice 

between these two families without looking closely at the tails. The effect of comparing 
the expected residual life functions shows the effect of a finite asymptote for the gamma 
distribution. 
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Figure 3.3 
Comparison of the Weibull and Gamma Distribution Models; IFR Case. 

 
An IFR comparison of these two distributions is made in Figure 3.3. The Weibull 

(2, 2) distribution was chosen (linear hazard function) and a reasonable convenient 
matching gamma (3.75, 2) distribution was selected after some experimentation. The 
story is much the same as in the previous case. The gamma hazard function has an ogive 
shape and exhibits a sharper separation from the Weibull hazard function. The lower 
hazard values translate in higher values for the expected residual life. Again, the effect of 
the asymptote is apparent. 
 
S-Plus codes for the creation of these graphs are in Appendix E. See the functions 
exp1.lnorm(), wei1.gam(), wei2.gam(). 
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3c. Cost of Planned Replacements 
 

 The material in Section 2b is used to continue our comparison of the Weibull and 
gamma distributions. 
 

The relative cost curves for our two cases, Weibull (2, 2) and Gamma (3.75, 2), are 
superimposed for three different ratios of c/k, the additional cost c of the unplanned 
replacement to the basic cost of a planned replacement. The minimum cost policies are 
tabled: 
 

Ratio, c/k                                0.5         1.0           2.0 
Min cost Weibull(2,2)            0.844     1.091       1.476 
Min cost Gamma( 3.75, 2)     0.800     1.043       1.379 

 

The members of the paired cost curves track each other quite well. The costs are 
very flat after the initial drop off. The optimum costs are less than one standard deviation 
beyond the mean. The S-Plus code is cost.comp(). 
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Figure 3.4 
Planned replacement cost curves. 
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3d. Weibull Distribution 
 

Three types of computations are illustrated: estimation for complete samples; bias 
reduction technique for complete samples; and estimation computations for censored 
samples. The model support functions are straightforward and need not be illustrated. 
 
Complete Samples 
 

The ball-bearing data is employed, see Section 1. It is a complete sample of 23 
failure times measured in millions of revolutions. The call 
 

weibull.est(BallB)                                                                     (3.1) 
 
   returns          shape:mle   scale:mle   samp size   shape:mm     scale:mm 
    2.101808     81.87422        23          2.01545        81.50336 
 
and the interpretation is α  =  shape; β  =  scale; mle  =  maximum likelihood; and  
mm  =  method of moments. Using the mle values, the estimated information matrix is 
 

  0

0.8676723 0.005163827ˆˆ( , )
0.005163827 0.0006590095

I α β
 

=  
 

.                                         (3.2) 

 
One may graph an asymptotic confidence ellipse for (α, β), using the relationship 
 
  ( 2

(2)
ˆ ˆˆˆ ˆ, ) ( , )nIα α β β α α β β χ′− − − − ≈                                                     (3.3) 

 
for n sufficiently large. The function ellipse (q,m,d,n0  =  100) computes the 
upper and lower portions of the confidence ellipse. The inputs are q  =  n 0̂I ; m is the 

centering vector ( ˆˆ, )α β ; d is the 100(1-α)th quantile of the chi square(2) distribution; and 
n0 is the number of points to use in each quarter of the ellipse. The output is a 2n0 by 3 
matrix. When one plots the superimposed graphs of each of columns 2 and 3 against 
column 1, the result is the ellipse. We an also plot an approximate confidence region 
based on the G2 distribution, Equation (2.17). The calling sequence is 
 

x <- seq(1.4, 2.9, .1); y <- seq(60, 105, 1) 
zz <- Gsq.wei(BallB, x, y, m[1], m[2], n)                                                          (3.4) 

 
plot(plot.wei[,1], plot.wei[,2], type="l", xlab="shape", ylab="scale", 

                          xlim = c(1.4, 2.9), ylim = c(60, 105)) 
lines(plot.wei[,1], plot.wei[,3]) 
contour(x, y, zz, nlevels = 1 ,v = d, add = T, lty = 3 ,labex = 0) 
title(main = "90% Confidence Regions for Weibull Parameters")                    (3.5) 

 
The results are in Figure 3.5. The dashed curve is computed from the G2 distribution. 
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Figure 3.5 
 
Bias Reduction 
 
 Using (2.24), (4.16) the formulae for bias reduction becomes 
 

  α*  =  4.309165ˆ(1 )
2n

α + ; β*  =  
ˆ1 3/ˆ (1 )

ˆ2n
αβ

α
+

+ .                                    (3.6) 

 
And when applied to the mle’s found for the ball-bearing data, the reduced bias estimates 
become 
 
  α*  =  2.2987, (mle  =  2.101808) 
  β*  =  83.92977 (mle  =  81.87422). 
 

For a sharper comparison, let us use a Monte Carlo random sample from a 
specified Weibull distribution, say Weibull( 1.5, 2). Let x <- rweibull(15, 1.5, 2). The 
estimation function returns 
 
                                 weibull.est(x)                                                                                 (3.7) 
 
             shape:mle    scale:mle   samp size   shape:mm    scale:mm 
             1.807413     1.720534        15         1.707669      1.707839 
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Use of (3.7) allows construction of the table 
 

Parameter Actual Max. Lik. Bias Reduced 
α 1.5 1.807413 2.067028 
β 2.0 1.720534 1.804933 

 
Censored Samples 
 

Let us treat the myeloma data set, per the Introduction, 65 observations, 17 of 
which are right censored; x <- myeloma[myeloma$del= =1,1] and  
t <- myeloma[myeloma$del= =0,1]. Begin with the finding of initial estimating values. 
Use the call1 
 

th <- init.wei(x, t),                                                                                  (3.8) 
 

which returns: th 
        u                 b              alph              beta 

                          3.949889    1.45214     0.6886389     51.92961 
 
then the estimation function; use the call 
 

Newt.wei(x, t, th[1:2]),                                                                         (3.9) 
 

which returns 
                u                   b               alph               beta          flag 
                          3.492412     0.9253385     1.080686     32.86512       0 
 
(Note: The flag starts at one and is changed to zero once the bisection search option is 
invoked.) See Section 4. 
 
3e. Gamma Distribution 
 
Complete Samples 
 

We use the parameterization (α, λ) where λ is the data parameter. Many prefer to 
use the scale parameter, β  =  1/λ. Because of this, we carry the option in the example. 
Let us again use the ball-bearing data and illustrate the use of the programs. The 
immediate goal is to fit the gamma distribution and estimate the Information matrix. 
Model fit comparisons are made at the close of this section. Equation (5.18) is 
implemented in a function gam.est(). The application upon executing 
 

th <-gam.est(BallB)                                                                (3.10) 

                                                 
1 The parameters (u, b) relate to the Extreme Value distribution; the bisection search method plays a role as 
well. These things are explained in Section 4. 
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produces the return 
 

               alpha-mle     lambda-mle     n    alpha-mm       lambda-mm 
               4.024706      0.05572775    23   3.710832        0.05138171 
 

Note the output contains both the maximum likelihood estimator and the method of 
moments estimator. It follows that beta-mle  =  17.94438 and beta-mm  =  19.46218. The 
information matrix (see (2.16)), is estimated to be 
 

 I ( ˆˆ,α λ )  =  
0.2819 17.94

17.94 1295.959
− 

 − 
           I ( ˆˆ,α β )  =  

0.2819 0.0557
0.0557 0.0125

 
 
 

.     (3.11) 

 
One may graph an asymptotic confidence ellipse for, say (α, β), using the relationship 
 
 ( 2

(2)
ˆ ˆˆˆ ˆ, ) ( , )nIα α β β α α β β χ′− − − − ≈                                                               (3.12) 

 
for n sufficiently large. The function ellipse(q,m,d,n0 = 100) computes the 
upper and lower portions of the confidence ellipse. The inputs are q  =  n Î ; m is the 
centering vector ( ˆˆ, )α β ; d is the 100(1-α)th quantile of the chi square(2) distribution; and 
n0 is the number of points to use in each quarter of the ellipse. The output is a 2n0 by 3 
matrix. When one plots the superimposed graphs of each of columns 2 and 3 against 
column 1, the result is the ellipse. For an example using the ball-bearing data: n  =  23 
and d  =  qchisq(0.9, 2); n0 is 100. Setting plot.dat <- ellipse(q, m, d) and then 
 

 plot(plot.dat[,1], plot.dat[,2], type = “l”)                (3.13) 
 lines(plot.dat[,1], plot.dat[,3]) 
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Figure 3.6 
Gamma Parameters: 90% Confidence Ellipses. 
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The α−λ ellipse was constructed from the above code. The α−β ellipse was 
constructed from the former using β  =  1/λ. It is remarkably close to the ellipse that 
would be based on the right-hand side of (3.12). 
 
Bias Reduction 
 

First, let us observe the effect of applying Equations (5.24), (5.29), and (5.34) to 
the ball-bearing data. The only formal assistance is offered in terms of the S-Plus 
function bias.gam(), which produces the constant C. 
 

C <- bias.gam(th[1])  =  -0.9936822                                                    (3.14) 
 

for use in (5.24). The results of all three bias reductions are 
 

Ball-Bearing Data 
Parameter Max. Lik Bias Reduced

α 4.02471 4.04631 
λ 0.05573 0.05633 
β 17.9444 17.9683 

 
It may be more useful to test the method using a smaller sample drawn from a Gamma 
population with specified parameters. Accordingly, let us use 
 
  X <- rgamma(15, shape  =  1.5, rate  =  0.5).                                       (3.15) 
 
The results are in the table: 
 

Parameter Actual Max. Lik Bias Reduced 
α 1.5 1.2668 1.2978 
λ 0.5 0.40196 0.4231 
β 2.0 2.4878 2.65097 

 
Censored Samples 
 

Let us treat the myeloma data set (App E) 65, observations 17 of which are right 
censored; x <- myeloma[myeloma$del= =1,1] and t <- myeloma[myeloma$del= =0,1]. 
 

First, we need initial estimates for input into the iteration method. The function 
init.gam(x) takes the uncensored portion of the data and computes the method of 
moments estimates. E.g., 
 

th0 <- init.gam(x) and the return is 0.98106187      0.04014575.        (3.16) 
 

Next, we use the general function Itest(x, t, th0, Newt, Llik), which will execute 
the iteration method described in Section 2c. The inputs are 
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 x      the uncensored data 
 t       the censored data 
 th0   the initial estimates 
 Newt <- Newt.gam 
 Llik <- Llik.gam 
 
The entry Itest(x, t, th0, Newt.gam, Llik.gam)                                                             (3.17) 
 
returned 

 
α̂   =  1.06707553; β̂   =  0.03315037; number of cycles to convergence  =  12. 

 
The codes for this and support functions can be found in Appendices C and D. 
 
3f. Lognormal Distribution 
 
Complete Samples 
 

Let us fit the lognormal distribution to the ball-bearing data. For complete 
samples this is a very simple task. Set x <- BallB and then 

 
µ̂  <- mean(log(x))  =  4.150383; σ̂ <- sqrt((n-1)/n)*stdev(log(x))  =  0.5216865.   (3.18) 

 
Let us also generate the 90% approximate confidence ellipse for (µ, σ), see 

Equation (2.16) and compare it with other confidence regions for normal data, 
specifically a region based on G2 of Equation (2.17), and an exact trapezoidal-shaped 
region. These are explained in Section 6b. See Equations (6.16) and (6.17). 

 
For the former we require the estimated information matrix 

 

 
3.674352 0

ˆ ˆ( , )
0 7.348704

I µ σ
 

=  
 

,                                                                  (3.19) 

 
and then m <- c(4.150383, 0.5216865); d <- qchisq(0.9, 2); plot.dat <- ellipse(n*I, m, d). 
The plotting sequence for Figure 3.7 is 
 
plot(plot.dat[,1], plot.dat[,2], type="l", xlab="mu", ylab="sigma", ylim=c(.3,.8), 
          xlim=c(3.8, 4.5)) 
lines(plot.dat[,1], plot.dat[,3]) 
contour(x, y, G2, nlevels = 1,v = d, labex = 0, lty=3, add=T) 
                          (see Section 6.b for the computation of G2) 
trap <- NormCT(log(BallB), 0.1, graph=F) 
lines(trap[1,], trap[2,]) 
points(xb, s) 
title(main = "90% Confidence Regions for Mu and Sigma") 
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Figure 3.7 

 
The solid ellipse is based on (2.16). The dashed curve is based on the G2 statistic 

of (2.17). The trapezoid region is an exact region based on the independence of the 
sample mean and sample variance. 
 
Bias Correction 
 

The estimator for µ is unbiased and the estimator for σ need only be divided by 
the correction factor in (6.18). For the ball-bearing data this results in 
 
    µ∗  =  4.150383    and    σ∗  =  1.034156×0.5216865  =  0.5395052   (3.20) 
 
Censored Samples 
 
 Use the myeloma data from Appendix E. The initializing values are taken from 
the mean and standard deviation of the log of the uncensored data. Call it th0. I.e., 
 
th0 <-_c(mean(log(x)),sqrt((22/23)*var(log(x)))),                                                       (3.21) 
 
which returns 4.1503827    0.5216865. 
 
Then execute 
 

Paramest <- Itest(x, t, th0, Newt.logn, Llik.logn)                                            (3.22) 
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and the return is 
 

µ̂   =  4.2533626; σ̂   =  0.5216074; number of cycles  =  18. 
 

Model Selection 
 

 Having maximum likelihood estimates for the parameters of our competitive 
models for describing the ball-bearing data, it is interesting to consider how one might 
choose. In [Meeker and Escobar] the choice is an extended gamma distribution, a 
distribution that is not directly treated here. It is easy to compute the  
Kolmogorov-Smirnov test statistics and use them as distance functions. Meaningful  
p-values cannot be computed because the distributions are fitted from data. The distances 
are 
 

ks.distance(BallB, Weibull) =  0.151 
ks.distance(BallB, Gamma) =  0.123 

  ks.distance(BallB, Lognorm) =  0.090 
 

 The ball bearing set is a complete sample and we can make a graph that contains 
the empirical and the fitted model distributions. For an empirical distribution we use 
 

  ( )
ˆ ( ) /( 1)jF x j n= +  for j  =  1, ··· , n                                                    (3.23) 

 

and plot these discrete values against the order statistics ( )jx . 
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Figure 3.8 
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4. The Weibull Distribution 

 The Weibull distribution is a very popular model for reliability work, largely 
because of its ease of use and of its monotone hazard function, which is increasing if the 
shape parameter α is larger than one and decreasing when that parameter is smaller than 
one. The parameter β is the scale parameter. The life length random variable X has a 
Weibull distribution if Y  =  (X/β)α has an Exp(1) distribution. This relationship is 
exploited broadly in what follows. 
 

The five sections in this chapter describe formulae for: a) the model 
characterization functions; b) likelihood analysis for complete samples; c) bias reduction 
of maximum likelihood estimates; and d) likelihood analysis for censored samples. This 
last section includes details of the use of the extreme value distribution and its role in the 
estimation problems. 
 
4a. Model Characterization Functions 

 
The density and survivor functions are 

f(x)  =  1x x( ) exp[ ( ) ]α− αα
−

β β β
    and    S(t)  =  texp[ ( ) ]α−

β
 for x,>0, t>0,          (4.1) 

 
where α > 0 is a shape parameter and β > 0 is a scale parameter. The mean and variance 
are 
 
 µ  =  β Γ(1 + 1/α)         σ2  =  β2 [Γ(1 + 2/α) − Γ2(1 + 1/α)].                  (4.2) 
 
The hazard function 
 

 h(t)  =  1t( )α−α
β β

.                       (4.3) 

 
The cumulative hazard function 
 

 H(t)  =  ( )t α

β
.                                              (4.4) 

 
The integrated survivor function 
 

 SS(t)  =  1/ 1 y
t( )

y e dy
α

∞ α− −

β

β
α ∫   =  t{ (1/ ) IncGam[( ) ]αβ

Γ α −
α β

.                          (4.5) 

 
The mean residual life  
 

LL(t)  =  SS(t)/S(t).                           (4.6) 
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4b. Likelihood Analysis for Complete Samples 
 

Let X1, X2, ··· , Xn be a complete random sample from a parent population,  
X ~ Weibull(α, β). Let l  be the log likelihood of a single observation, x. The direct 

analysis of this likelihood system follows. Liberal use is made of the fact that ( )X Yα

β
= ~ 

Exp(1). 
 

l   =  xln( ) ln( ) ( 1) ln(x) ( )αα − α β + α − −
β

                   (4.7) 

 

l α  =  1 x xln( ) ln(x) ( ) ln( )α− β + −
α β β

  =  1 [1 ln( ) ln( )]Y Y Y
α

+ −  

                          (4.8) 

l β  =  x[ 1 ( ) ]αα
− +

β β
  =  [ 1 ]Yα

β
− +  

 

l α α  =  2
2

1 x x[ 1 ( ) ln ( ) ]α α− +
α β β

  =  2
2

1 [1 ln ( )]Y Y
α

− +  

 

l β β  =  2

x[ 1 ( 1)( ) ]αα
− α +

β β
 =  2 [1 ( 1) ]Yα α

β
− +        (4.9) 

 

l α β  =  1 x x x[ 1 ( ) ( ) ln( ) ]α α α− + +
β β β β

  =  1 [ 1 ln( )]Y Y Y
β

− + +  

 
Since 0  =  E{ l α }  =  E{ l β}, we may deduce some interesting relationships. 
 

 E{ X( )α

β
}  =  E{Y}  =  1 and E{ X X( ) ln( )α

β β
} − E{ln(X)}  =  ( )β−

α
ln1        (4.10) 

 
Next, when we replace x with xi and sum over the data, we may write the 

members of the Hessian as 
 

 Lα α  =  n 2i i
2 i 1

1 x x{n ( ) ln [( ) ]}α α
=

− +
α β β∑  

 

 Lβ β  =  n i
2 i 1

x{n ( 1) ( ) }α
=

α
− α +

β β∑  

 

 Lα β  =   n ni i i
i 1 i 1

1 x x x{ n ( ) ( ) ln[( ) ]}α α α
= =

− + +
β β β β∑ ∑  
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The maximum likelihood estimates are computed using an iteration function that 
follows readily from the pair of equations Lα  =  0 and Lβ   =  0. These two equations are 

easily extracted from (4.9). The latter yields the equation 1
n ∑ [ ( )x

b
α ] = 1, which, when 

substituted into the former, produces 
 

  1 1 1ln( )( ) ln( )i
i i

xx x
n n

α

α β
= −∑ ∑ .                                        (4.11) 

 
This in turn allows a determination of α from the left-hand side after an initial value of α 
is placed into the right-hand side. The iteration proceeds when the new value so 
determined is inserted into the right-hand side and the process repeated. This is often 
called the natural iteration function; it need not converge in general, but in this case it 
does. Its use is illustrated in Chapter 3. 
 
The information matrix is 
 

 I0  =  
2 2

2

[1 (2) (2)] / (2) /
(2) / [ / ]

α β
β α β

′ + Ψ + Ψ Ψ
 

Ψ 
.                                                     (4.12) 

 
Proof. It follows from, see Appendix A, 

2X XE( ) ln [( ) ]α α =
β β

E{Y ln2(Y)}  =  Γ''(2) 

   X XE( ) ln[( ) ]α α

β β
  =  E{Y ln(Y)}  =  Γ'(2) 

 
     Γ'(2)  =  Ψ(2) and Γ''(2)  =  Ψ' (2) + [Ψ(2)]2.                          � 
 
Use of this is made in (3.3). 
 
4c. Bias Reduction 
 

The technique being used treats the two parameters separately. 
 
(i) shape parameter, θ  =  α, so U  =  l α when referring to (2.18). 
 

U  =  )}ln()ln(1{1 YYY −+
α

 

 

U'  =  2
2

1 [1 ln ( )]Y Y
α

+  
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First, 
 

E{U3}  =  3

1
α

 {[1 + 3Γ'(1) −3 Γ'( 2)]  +3[Γ''(1) − 2 Γ''(2) + Γ'''(3)] 

 
              + [ Γ'''(1) −3Γ'''(2) + 3Γ'''(3) − Γ'''(4)]} and the expectation is 
 

K3 0  =  3

1
α

{-7.921007} (see Appendix A).                                                     (4.13) 

 
Second, 

E{U U'}  =  3

1 {1 (1) (2) (2) (2) (3)}
α

′ ′ ′′ ′′′ ′′′+ Γ − Γ + Γ + Γ − Γ  

 
and the expectation is 
 

 K1 1  =  3

1
α

{-2.136823} (see Appendix A).                                                   (4.14) 

 
 Third, from (4.11) the information in an observation is 
 

 i(α)  =  I0[1, 1]  =  [ 2 21 (2) (2)] /α′+ Ψ + Ψ   =  2

1
α

{1.823681}.                      (4.15) 

 
It follows from (2.20) that the bias function is 
 

 b(α)  =  ( 4.309165)
2n
α

− .                                   (4.16) 

 
(ii) scale parameter, θ  =  β and U  =  l β when referring to (2.15). 
 

U  =  }1Y[ −
β
α  

 

U'  =  2 [1 ( 1) ]Yα α
β

− +  

 

K30  =  E{U3}  =  3233 )(2}1Y3Y3Y{E)(
β
α

=−+−
β
α                 (4.17) 

 

K11  =  E{U U'}  =  
2

3 {[ 1][1 ( 1) ]}E Y Yα α
β

− − +   =  
2

3

( 1)α α
β

− +                      (4.18) 
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i(β)  =  I0[,2, 2]  =  (α/β)2                                  (4.19) 
 
 It follows from (2.20) that the bias function is 
 

 b(β)  =  (1 3/ )
2n

β α
α

−
+ .                                          (4.20) 

 
4d. Treatment of Censored Data; Use of the Extreme Value Distribution 
 

The programs offered for complete samples use the Newton-Raphson iteration 
scheme in two dimensions. However, if one transforms the data by the logarithm the 
resulting density function is that of the extreme value distribution. The advantage of so 
doing allows the elimination of one of the two parameters in the system of likelihood 
equations. This technique is employed in treating the censored case. 
 

The development of the relationship between the Weibull and Extreme Value 
distributions is essentially that appearing in [Lawless]. Begin with the survivor function 
 
  S(t; α, β)  =  Pr{X > t}  =  exp{ − (t / β)α}.                            (4.21) 
 
It follows that the pdf is 
 

  })(exp{)()( 1 αα

βββ
α xxxf X −= − .                                                          (4.22) 

 
Both parameters are positive; α is the shape parameter and β is the scale parameter. 
 
 The pdf of the extreme value distribution has pdf 
 

  ∞−−=
−−

foree
b

vf b
uv

b
uv

V }exp{1)(
)()(

< v < ∞.     (4.23) 

 
This distribution is related to the Weibull by the transformation 
 
  V  =  log(X)                      X  =  exp(V)     (4.24) 
 
and the parametric identification 
 
  u  =  log(β)                         β  =  exp(u) 
  b  =  1/α                              α  =  1/b,                  (4.25) 
 

from which it follows that )(log
β

α x
b

uv
=

−   =  log[(x/β)α]. 
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Upon finding the mle’s for the extreme value distribution and using the invariance 
property of maximum likelihood estimators one can obtain maximum likelihood 
estimators for the Weibull distribution. The development will not depend on whether the 
censoring mechanism is of Type 1, Type 2, or any other right censoring plan. 
 

Let X1, X2, ···, Xn be the life lengths of n items placed on test. Under Type 2 
censoring, testing stops when r items have failed. Of course, if r  =  n, then there is no 
censoring. Under Type 1 censoring each expiring has a test termination time t. The 
structure of the likelihood system allows both cases to be treated with a single set of 
equations. The set D contains those life lengths that were completed prior to the 
termination time. The set C contains those life lengths that exceeded the allotted time The 
structure of the likelihood equations is given in Equations (2.27) and (2.28). The indicator 
variables δi tells us that vi  =  ln(xi) when equal to one, and vi  =  ln(ti) when equal to zero. 
The development should be compared with [Lawless, eq. (4.1.1)]. The log likelihood 
function has the structure 
 
  L(u, b)  =  ln( ( )) ln( ( ))i V iD C

f v S v+∑ ∑ ,                                           (4.26) 
 
where f has the form (4.22) and 
 

SV(vi)  =  Pr{Vi > vi}  =  Pr{X > ti}  =  exp[ exp( )iv u
b
−

− ]                 (4.27) 

 

 ]exp[)ln(),(ln *

b
uv

b
uvbrbulikL i

D
i −

−
−

+−== ∑∑ , 

 

  where * exp[ ] exp[ ] exp[ ]i i i
D C

v u v u v u
b b b
− − −

= +∑ ∑ ∑  

 

 }{exp1
1

*

b
uv

bb
rL i

r

u
−

+−= ∑  

 

 )exp(11
1

*

b
uv

b
uv

bb
uv

bb
rL i

r
i

D
i

b
−−

+
−

−−= ∑∑ . 

 
Setting the first of these two equal to zero and solving leads to the separation 
 

  biu

b
v

r
e )]exp(1[ *∑=                                                                           (4.28) 

 
and substituting into the second equation leads to the nonlinear equation in b, 
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 h(b)  =  01)exp(/)exp( ** =−− ∑∑∑ D i
ii

i v
r

b
b
v

b
vv .                                    (4.29) 

 
This can be solved using Newton-Raphson.2 To this end, we record the derivative 
 

 h'(b)  =  
/ /2 2

/ /2 2 2

[ ]
1

[ ]

i i

i i

v b v b
i i

v b v b

v e v e

b e b e

∗ ∗

∗ ∗

−
+ −∑ ∑

∑ ∑
.                                                          (4.30) 

 
Having b one obtains u from (4.28); one converts to (α, β) using (4.26). 
 
Equation (4.27) can provide a way to get initial estimates for the parameters; it works for 
the complete case as well. Specifically, use the Kaplan-Meier estimate for the survivor 
function of V, the extreme value variate. Note that 
 
 y  =  ln(-ln( ˆ( )S v )  =  (v −u)/b.                                                                         (4.31) 
 
The least square estimates of u and b can serve for initialization. 

                                                 
2 We have experienced lengthy oscillation using this method. Success has been achieved by using  
Newton-Raphson until two consecutive values of h are of opposite signs. At this point, we switch to a 
bisection search. The output contains a flag, which, if equal to zero, tells us that the bisection search was 
invoked. See the function Newt.wei(). 
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5. Gamma Distribution 
 
 The gamma distribution mimics the Weibull distribution in the central portion, but 
there are major differences in the tails. The gamma distribution, for shape parameter α 
more than one, has an S-shaped hazard function which, although monotone increasing, 
approaches a finite asymptote. In this development, the rate parameter is λ. 
 
5a. Model Characterization Functions 

 
The density and survivor functions are 
 

f(x)  =  1x exp[ x]
( )

α
α−λ

−λ
Γ α

 and S(t)  =  1−IncGam(λ t) for x,>0, t>0,     (5.1) 

 
where α > 0 is a shape parameter and λ > 0 is a rate parameter. The mean and variance 
are 
 
 µ  =  α/λ             σ2  =  α/λ2.           (5.2) 
 
The hazard function is 
 
 h(t)  =  f(t) / S(t).            (5.3) 
 
The cumulative hazard function is 
 
 H(t)  =  − log [S(t)].               (5.4) 
 
The integrated survivor function is 
 

 SS(t)  =  ( )uSuduuS
t

=∫
∞

)( | ∞
t  ∫

∞
−

t
udSu )(                                          

 

           =  
t

tS(t) uf (u) du
∞

− + ∫   =  − t S(t) + α 
u

t

u e du
( 1)

α −∞

Γ α +∫  

 
                      =  − t S(t, α)  +  α S(t, α + 1).          (5.5) 
 
The mean residual life  is 
 

LL(t)  =  SS(t)/S(t)                (5.6) 
 
5b. Likelihood Analysis for Complete Samples 
 

Let X1, X2, ··· , Xn  be a complete random sample from a parent population,  
X ~ Gamma(α, λ). The log likelihood, scores and their partial derivatives have the forms 
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l   =  α ln(λ) − ln(Γ(α) + (α−1)ln(x) − λx                               (5.7) 
 

αl   =  ln(λ) − Ψ(α) + ln(x)                                                                                (5.8) 
 

λl   =  α ⁄ λ − x                                                                                                   (5.9) 
 

ααl   =  −Ψ'(α);      λ λl   =  −α ⁄ λ2 ;     α λl   =  1 ⁄ λ                                        (5.10) 
 
But if the alternative parameterization is used, β  =  1/λ, one must adjust (5.9) and (5.10) 
and use 
 
 βl   =  −α / β + x / β2; α βl   =  −1 / β2; β βl   =  α / β2 − 2 x / β3.                    (5.11) 
 
Since 0  =  E{ αl  } we may deduce an interesting relationship. 
 
 E{X − ln(X)}  =  ln(λ)  − Ψ(α)                                                                        (5.12) 
 
It is useful to record the statistics 
 

x   =  Σxi/n;      )xln(   =  Σ ln(xi)/n;      s2  =  Σ(x1 – x )2/(n – 1),        (5.13) 
 
and then the log likelihood function is easily expressed as 
 

L  =  n · α · ln(λ) – n · ln[Γ(α)] + (α – 1) Σ ln(xi) – λ Σ xi,                  (5.14) 
 
and the two components of the gradient vector are 
 

Lα   =  n [ ln(λ) – Γ′(α) / Γ(α)] + Σ ln(xi)                                             (5.15) 
 
Lλ   =  n [ α / λ ] – Σ xi                                                                         (5.16) 

 
Setting Lλ  =  0 allows the substitution of α  =   λ x  into  Lα  =  0. The resulting equation 
can be solved by Newton-Raphson iteration. 

The Newton-Raphson algorithm requires initialization estimates. It is convenient 
to use the method of moments estimators for this purpose. Thus, we solve the equations 

 x   =  α / λ     and     s2  =  α / λ2,                                                         (5.17) 
and obtain  α~   =  2x /s2     and     λ

~   =  x  / s2. 
 
Because of the elimination of λ, one requires only α~  for initialization into 

  g(α)  =  ψ(α) – ln(α) − )xln(  + ln( x )  =  0      (5.18) 
g'(α)  =  ψ'(α) – 1 / α. 
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This is managed by the gamma estimation function suite (see gam.mle(). Its use is 
illustrated in 3e). The S-Plus code is in Appendix E. Asymptotic expansions for the psi 
function and its derivatives are recorded in Appendix A. 

The information matrix, developed in Appendix C, one for each parameterization 

 ( ) ( )








−

−
= 21

1'
,

λαλ

λαψ
λαI            2

( ) 1/
( , )

1/ /
I

α β
α β

β α β
′Ψ 

=  
 

                          (5.19) 

 These developments are applied in 3e to real data. The computations include 
confidence regions for the two parameterizations. 
 
5c. Quantities Needed to Execute the Bias Reduction Method 

 
The general formulae (2.17), (2.20), and (2.23) are developed for when dealing 

with complete samples from the gamma population. The method adopted treats the 
parameters individually. Accordingly, the shape parameter α is treated first, and then the 
rate parameter, λ. 
 
Case i. Shape parameter; θ  =  α and hence U  =  l α 
 

U  =  ln(λ) − Ψ(α) + ln(X)                               (5.20) 
U'  =  −Ψ'(α)                                 (5.21) 
i(α)  =  Ψ'(α)                                 (5.22) 
E{U3}  =  E{ln(λX) − Ψ(α)}3  =  E{ln(Y) − Ψ(α)}3, where Y ~ gamma(α, 1) 
 =  ( )ψ α′′                                 (5.23) 

 
E{U' U}  =  0 since U' is constant. 

 
It follows that 
 

2

( )ˆ( )
2 [ ( )]

b
n

αα
α

′′Ψ
=

′Ψ
                                                                                          (5.24) 

 
and the bias reduced estimate is  

 

ˆ / 2C nα α∗ = −      with     C  =  2

ˆ( )
ˆ[ ( )]
α

α
′′Ψ
′Ψ

                                                        (5.25) 

 
Accordingly, the quantity C must be computed case by case. The S-Plus function 
bias.gam() in Appendix C can be used to compute it. 
 
Case ii. Rate parameter; θ  =  λ and hence U  =  l λ 
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 U  =  Xα
λ

− , U'  =  2

α
λ

− , i(λ)  =  α/λ2.       (5.26) 

 E{U3}  =  −2α/λ3          (5.27) 
 E{UU'}  =  0.                                                                                                    (5.28) 
 
It follows that 
 

b(λ)  =  −
n
λ
α

                                                                                                    (5.29) 

 
and the bias reduced estimate is 

1ˆ(1 )
ˆn

λ λ
α

∗ = +                                                                                                   (5.30) 

 
Case iii. (Alternate parameterization), θ  =  λ and hence U  =  l β 
 

U  =  X/β2 −α/β                                                                                                (5.31) 
 
U'  =  −(2X−αβ)/β3                                                                                          (5.32) 
 
i(β)  =  (α/β)2.                                                                                                   (5.33) 

 
Using Y  =  X/β leads to E{Y−α}3  =  2α and E{( Y−α)( 2Y−α)}  =  2α 
K30  =  2α/β3;      K1,1  =  −2α/β3 and 
 
 b(β)  =  − 2 β / nα3                                                                                           (5.34) 
 
and the bias reduced estimate is 
 
 β*  =  β̂ (1+2/n 3α̂ ).                                                                                          (5.35) 
 
5d. Treatment of Censored Samples 
 

Equations (2.25) thru (2.27) take the following forms when sampling from a 
censored gamma population. 
 

L  =  r [α log(λ) − ψ(α)] + (α−1) i iD D
log(x ) x− λ∑ ∑  

 
                     + iC

log[S(t )]∑                                                                                        (5.36) 
 

Lα  =  r [log(λ)  −ψ(α)] + iD
log(x )∑  + i iC

S (t ) / S(t )α∑  
                                                                                                                                      (5.37) 

Lλ  =  r α ⁄ λ − iD
x∑  + i iC

S (t ) / S(t )λ∑  



 36

Lα α  =  − r ψ'(α) + 2
i i i iC

{S (t ) / S(t ) [S (t ) / S(t )] }αα α−∑  
 

Lλ λ  =  − r α ⁄ λ2 + 2
i i i iC

{S (t ) / S(t ) [S (t ) / S(t )] }λλ λ−∑                                 (5.38) 
 

Lα λ  =  r ⁄ λ + 2
i i i i iC

{S (t ) / S(t ) S (t )S (t ) /[S(t )] }αλ α λ−∑  
 

The unresolved computational problems faced when dealing with Equations 
(5.37) and (5.38) appear in those summations over the set C. They contain derivatives of 
the Incomplete Gamma function and pose a major development. Our first step is to  
re-express these quantities in terms of he survivor function of the standard gamma 
random variable (λ = 1). Let us use the notation 
 

   *( )S t   =  11
( )

x

t
x e dxα

α
∞ − −

Γ ∫ .                                                 (5.39) 

 
It is easily seen that the above partial derivatives are needed only for this standard form. 
I.e., 
 
   *( ) ( )S t S tλ= ;     *( ) ( )S t S tα α λ= ;     *( ) ( )S t S tα α λ=               (5.40) 
 
and the algorithms used are described in Appendix C. But, for the mixed partial 
derivative and the ones with respect to λ, we develop the formulae contained in the 
summary below. 
 
Density                                                                                                                         (5.41) 
 

f*(x)  =  x a-1 e –x / Γ(α) is used for the standard form, i.e., λ  =  1. 

f(x; α, λ)  =  xex λα
α

α
λ −−

Γ
1

)(
  =  λ f *(λx) (or f(x) for short) 

f *
x (x)  =  f * (x) 1[ 1]

x
α −

−  

f α (x)  =  f(x) [ln(λx) − Ψ(α)] 
 
fλ(x)  =  (α/λ - x) f(x) 
 
f αλ (x)  =  [(α/λ - x) (ln(λx) −Ψ(α)) +1/λ] f(x). 

 
Survivor                                                                                                                        (5.42) 
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S(t; α, λ)  =  
t

f (x)dx
∞

∫  =  S*(λt), where S*(t)  =  *

t
f (x)dx

∞

∫  

 S *
α (t)  =  *

t
f (x)[ln(x) ( )]dx

∞
− Ψ α∫  

 S α (t)  =  S *
α (λ t) 

 S ( )t tλ = − f*(λ t)  =  t
λ

− f(t) 

 S α λ (t)  =  − t f*(λt)[ln(λ t) − Ψ(α)]  =  t
λ

− f(t)[ln(λ t) − Ψ(α)]. 

 
Systems of second partial derivatives                                                                          (5.43) 
 

f α α (x)  =  f(x){[log(λx) − Ψ(α)]2 − Ψ'(α)} 
 
 f α λ (x)  =  f(x){(α/λ −x) [log(λx) −Ψ(α)] + 1/λ} 
 
 f λ λ (x)  =  f(x){[α/λ − x]2 −α/λ2} 
 
 S αα (t)  =  S *

αα (λ t) 
 

S *
αα (t)  =  * 2

t
f (x)[ln(x) ( )] dx '( )S(t)

∞
− Ψ α − Ψ α∫  

  
 S α λ (t)  =  − t f * (λt)[ln(λt) − Ψ(α)] 
  

S λ λ (t)  =  −t2 f*(λt)[ 1 1]
t

α
λ
−

−  
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6. The Lognormal Distribution 
 
 The lifetime X is lognormal, LN(µ, σ2) if Y  =  log(X) is N((µ, σ2). The model 
can be derived from fairly plausible assumptions and often found suitable for 
representing lifetimes, especially when large values are not of interest. Some applications 
are cited in {Lawless, p. 24]. This distribution has some strange properties; e.g., its 
hazard function is an inverted bathtub. 
 
 There is great support for the normal distribution, and this support translates to the 
lognormal distribution. For purposes of leveraging this support it is convenient to draw 
attention to some properties. 
 
Properties of the Normal Distribution 
 

Use ϕ (x) for the N(0, 1) density and Φ(x) for its cumulative distribution function. 
That is 

ϕ (x)  =  
21 exp( )

22
x

π
−                                                                                    (6.1) 

 
for the standard normal pdf and the properties: 

 

ϕ' (x)  =  − x ϕ(x);    Φ(x)  =  
x

−∞∫ ϕ(v)dv.                                                        (6.2) 

 
Further, the survivor function for the N(0, 1) case 

 
 S(t)  =  1 − Φ(t);                                     (6.3) 
 
and the integrated survivor function can be developed 
 

SS(t; 0, 1)  =  
t

∞

∫ [1 − Φ(x)]dx  =   
t x

∞ ∞

∫ ∫ ϕ (v)dv dx  =  
x

∞

∫ ϕ(v  )[
v

t
dx∫ ]dv 

          =  ( )
x

v t
∞

−∫ ϕ (v)dv  =  − 
t

∞

∫ ϕ'(v)dv − t
t

∞

∫ ϕ(v) dv 

 
          =  ϕ(t) − t [1 − Φ(t)].                                 (6.4) 

 
The general N(µ, σ2) case can be expressed using 

 

 f(x)  =  1
σ

ϕ ( )x µ
σ
−             and        S(t)  =  t µ

σ

∞

−∫ ϕ ( )v dv                                (6.5) 
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and the integrated survivor function is 
 

 SS(t)  =  σ {ϕ ( )t µ
σ
−  − ( )t µ

σ
− [ 1 − Φ ( )t µ

σ
− ]}.                   (6.6) 

 
So much for the normal distribution. Let us turn to the lognormal distribution. 

 
6a. Model Characterization Functions 
 

The density and survivor functions for LN(µ, σ2) are 
 

f(x)  =  1
xσ

ϕ
log( )( )x µ

σ
−  and S(t)  =  1 − Φ(

log( )t µ
σ

−
) for x, >0, t>0,         (6.7) 

 
where µ and σ > 0 take their usual interpretation. The mean and variance are 
 
 mean(X)  =  2exp[ / 2]µ σ+       var(X)  =  exp[2µ+σ2] [exp(σ2 ) − 1].              (6.8) 
 
The hazard function, or age specific failure rate is 
 
 h(t)  =  f(t)/S(t).                                    (6.9) 
 
The cumulative hazard function is 
 
 H(t)  =  − log[S(t)].                                                                             (6.10) 
 
The integrated survivor function is 
 

 SS(t)  =  [1 − Φ log( )( )t µ
σ

− ] { 
2 / 2eµ σ+  − t}.                                                    (6.11) 

 
The mean residual life  is 
 

LL(t)  =  SS(t)/S(t).                                    (6.12) 
 
Only the integrated survivor function is a bit intricate to understand. Let’s first treat a 
related integral. 
 

 
a

∞

∫ [1 − Φ(w)] eσw dw  =  1
σ a

∞

∫ [1 − Φ(w)] d(eσ w) 

 

=  1
σ

{ − eσa [1 − Φ(a)] + 
a

∞

∫ eσwϕ(w)dw} 
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and use the complete the square technique in the integral part 
 

1
σ

{ − eσa [1 − Φ(a)] + 
2 / 2eσ

a

∞

∫ ϕ(w-σ)dw}. 

 
With this in mind, let us turn to 
 

SS(t)  =  
t

∞

∫ [1 − Φ( log( )v µ
σ

− )]dv  =  σeµ 
a

∞

∫ [1 − Φ(w)] eσw dw, 

 
where a  =  (log(t) − µ) ⁄σ. Now we put in the related part and complete the function in a 
computable form. 

SS(t)  =  eµ { − eσa [1 − Φ(a)] + 
2 / 2eσ

a σ

∞

−∫ ϕ(w)dw} 

                =  [1 − Φ ( )−a σ ] 
2 / 2eµ σ+  − t [1 − Φ(a)].                   �                              (6.13) 

 
6b. Complete Samples 
 

Let X1, X2, L , Xn be a complete random sample from a parent population,  
X ~ LN(µ, σ2). The relationship connecting Y  =  log(X) does not involve the parameters. 
So, the well-known formulae for the maximum likelihood estimates of µ and σ using y1, 
y2, ··· , yn, the logarithms of the data, provide the maximum likelihood estimates. The 
invariance principle is invoked. Further, the information matrix will be the same. 
 

 I0(µ, σ)  =  
2

2

1 0

20

σ

σ

 
  
 
 
  

                                                         (6.14) 

 
Note: Had we been estimating  σ2 instead of  σ, the lower right entry would have been 
1/(2σ2). 
 

Since the normal and log normal distributions have the same set of parameters, 
then the joint confidence regions are the same. The approximate ellipses can be generated 
in the same way as before; but an exact trapezoidal-shaped confidence region is also 
available, and it is interesting to compare the two. The former can be found by using 
(6.14) in Equation (2.16). The latter is based on the independence of the sample mean and 
variance. Let 
 

  21 ( )i iY Y and SS Y Y
n

= = −∑ ∑                                                      (6.15) 

 
when Y1, Y2, L , Yn is a random sample from N(µ, σ2). 
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The former is distributed according to N(µ, σ2/n) and the latter by 2 2
( 1)nσ χ − . It follows 

that a joint confidence region for (µ, σ) can be obtained from setting the product 
 

 Pr{ 0 0( )Xz n zµ
σ
−

− ≤ ≤ }Pr{ 2
1 2/k SS kσ≤ ≤ }  =  1 − α.                               (6.16) 

 
Let the first factor have probability 1−α1 and the second 1−α2. A default position might 
be to use (1−α)½ for each, but it is useful to be more flexible. We choose to use a 
parameter p, 0 < p < 1, such that 
 
 1−α1  =  (1−α)p    and    1−α2  =  (1−α)1−p. 
 
Also, for greater flexibility, let us use a parameter q, 0 < q < 1, in the second factor so 
that 
             Pr{ 2

( 1)nχ −  < k1}  =  qα1 and Pr{ 2
( 1)nχ −  > k2}  =  (1 − q)α1. 

 
This provides relief from the practice of splitting the tails evenly in the asymmetric chi 
square distribution. 
 

Each factor can be pivoted separately, i.e., 
 
 Pr{ 0 / /X z n X nσ µ σ− ≤ ≤ + }Pr{ 2 1/ /SS k SS kσ≤ ≤ }.              (6.17) 
 
The confidence region is the intersection of the two events. The range of values for σ in 
the second factor is used in the interval limits of the first factor. This capability is 
programmed into the function NormCI(x, alph, p, q, graph  =  T), a 
plotting function that accepts the data x and α, where 1 − α is the confidence level. If 
graph  =  F, then the graph is not drawn and the return is the set of vertices of the 
trapezoid. The function contains defaults p  =  ½, q  =  ½. 
 
6c. Bias Reduction 
 
 The estimators for µ is unbiased, but not so for the estimator for σ. In this latter 
case, we can use an exact correction based on the expectation the maximum likelihood 
estimator for σ, i.e., 
 

 E{s}  =  2 ( / 2)
(( 1) / 2)

n
n n

σ Γ
Γ −

                                                                              (6.18) 

 
and the exact bias adjustment is obtained from (6.18). 
 
Note 1: [Barndorff-Nielsen and Cox, 1994, p. 187] post the reciprocal of the third factor 
in (6.18). 
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Note 2: If one is using the unbiased estimator for σ2, then the factor √2/n should be 
replaced with √2/(n-1). 
 
6d. Censored Samples 
 

We require partial derivatives of f and S, (6.7) for use in (2.28), (2.29), and (2.30). 

The are recorded here. Begin with those of the first order, using ln( )xz µ
σ

−
=  and 

ln( )tw µ
σ

−
=  

 

 2

1( )f x
xµ σ
−

= ϕ' 2

ln( ) 1( )x z
x

µ
σ σ

−
= ϕ ( )z   =  z f(x)/σ 

 

 2

1( )f x
xσ σ

= ϕ 2( ){ 1}z z −   =  (z2-1) f(x)/σ 

 

Sµ(t)  =  1
σ

ϕ ( )w  

Sσ(t)  =  w
σ

ϕ ( )w  

 
and those of the second order, 
 

 3

1( )f x
xµ µ σ

= ϕ( 2)( 1)z z −   =  (z2-1) f(x)/σ2 

  

 3

2( )f x
xσ σ σ

= ϕ 2 3( ){1 3 }z z z z− − +   =  2 f(x)[1 − z − 3z2 + z3]/σ2 

 

 3

1( )f x
xµσ σ

= ϕ 2( ){ ( 3)}z z z −   =  z(z2 − 3) f(x)/σ2 

 

 Sµ µ  =  2

w
σ

ϕ ( )w  

 

 Sσ σ  =  2
2

1 ( 2)w w
σ

− ϕ( w ) 

 

 Sµ σ  =  2
2

1 ( 1)w
σ

− ϕ ( )w . 

 
The program for estimating µ and σ is Itest(). Its use is illustrated in Section 3. 
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7. Summary and Conclusions 
 
 The paper offers great flexibility to those practitioners and students who wish to 
make exploratory computations and learn the behavior of models. Those possessing a 
modicum of programming capability can expand the choices given here to other models 
and situations as the structure offers a template that facilitates additional expansion. 
Much remains to be learned. What follows is a listing of what has been learned thus far. 
We comment on the items as presented in Section 3. 
 
 Survival distribution selection must be based on careful modeling and good 
judgment. This area of statistical work has the disadvantage that the collection of large 
quantities of data requires time, often unacceptable amounts of time. Yet the comparisons 
of models using somewhat small data sets does not allow one to examine the tail 
behavior. The sole use of histograms and q-q plots does not suffice. The graphing of the 
other support functions, especially the hazard function and mean residual life, can aid the 
practitioner in modeling and the making of choices. Such is illustrated in Sections 3a and 
3b. 
 
 The graphing of the behavior of planned replacement policies can be quite useful 
to those involved in the generation of maintenance policies. The problem treated in 3c 
deals solely with the relative costs of planned versus random replacements. The most 
interesting point is the flat behavior of the cost curves once the original high costs fall 
away. This is useful to the maintenance planner because the replacement model is 
generically a very simple one, one that does not consider the costs of arranging to make 
the replacements at the optimal point in time. Such costs are likely to be high and it is 
comforting to know that the optimal point is contained in a very broad window. One need 
not give ground to the problems of performing maintenance at inconvenient times. 
 
 Sections 3d, 3c, and 3f illustrate the implementation of the general materials 
presented in Section 2 for the Weibull, Gamma, and Lognormal distributions, 
respectively. 
 
There are four areas of specialization for each: 
 

Computation of the support functions. 
Maximum likelihood parameter estimation for complete samples. 
Implementation of bias reduction techniques. 
Maximum likelihood estimation for right censored samples. 
 

Summary of each is made in turn. 
 
 Most software systems provide the capability to compute density, cumulative 
distribution, and quantile functions. The extension of such capabilities to the set of 
survival distribution support functions has yet to occur. The three cases presented here 
provide illustration as to what must be done. 
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 Maximum likelihood estimation for complete samples is popular and well 
understood, yet they are hard to compute. The algorithms presented here have high 
precision. The statistics texts do not provide much in the way of support for joint 
confidence regions for multi-parameter models. The author believes them to be useful. 
They bear witness to Bellman’s “curse of dimensionality.” It is quite remarkable how 
large these regions are for samples of size 50 and 100. 
 
 Maximum likelihood estimators have long been known to be biased, but there 
appears little available commentary on the importance of this bias. The issue has not 
received conspicuous attention. The method implemented here was taken from [Cox and 
Hinkley]; it is a first order approximation based on the marginal distribution of the 
individual parameters. The limited computational results presented are not very 
interesting; but the stage is set for a broadly based Monte Carlo simulation study geared 
to learn the behavior of the method. At present, it appears that it may be useful only for 
rather small sample sizes. 
 
 Methods for managing censored data may be available in the Splida and Reliasoft 
systems. But these are opaque. The open methods that appear here are limited, but offer a 
beginning. The functions Itest() and Golden() are generic. In concept, they may be 
applied with any right-censored data set modeled with any distribution that is smooth in 
its parameters, and any finite dimension of the parameter space. However, they have not 
been broadly tested. In fact, their use was not competitive with the bisection search 
method devised for the Weibull distribution. See Section 4. 
 
 The idea of alternating the application of Newton-Raphson iteration with a golden 
section search may be new. It should be useful whenever the log likelihood is a concave 
function of the parameters. It appears to converge in a reasonably short amount of time, 
in spite of its low dependence upon the quality of the initializing point. 
 
 The computation of derivatives of the incomplete gamma function came up in the 
treatment of the gamma distribution for censored samples. A method of high precision 
was developed and appears in Appendix D. It is suitable for parallel processing. Mostly 
the values are precise to at least nine decimal places. 
 
 The computation of the information matrix and the bias reduction term is quite 
difficult for censored samples. Indeed the calculation depends upon the type of censoring. 
Much depends on the information matrix. Also, there is dependence on the ratio of the 
number of uncensored sample to the total sample size. The quality of the estimation 
results will deteriorate as the number of uncensored observations becomes small. 
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Locations of S-Plus Listings in the Appendices 
 
Appendix A. psi(), psi.bas(), g1(), g2(), g3(), g4() 
 
Appendix B. weibull.mle(), weibull.mm(), weibull.mle(), weibull.est(), Newt.wei(), 
 
          Init.wei(), KapM(), convtowei() 
 
Appendix C. Itest(), Golden(), init.gam(), Llik.gam(), Newt.gam(), Lp.gam(), 
                     Llik.logn(), Newt.logn(), Lp.logn() 
 
Appendix D. Surv.gam(), surv.gam(), surva.gam(), survaa.gam(), trans1(), trans2(), 
                      trans3() 
 
Appendix E. gam.est(), ellipse(), exp1.lnorm(), wei1.gam(), wei2.gam(), wei.cost(), 
                      NormCT(), area.comp(), seg.comp(), sol.pt(), Newt.wei(), exp.lnorm(), 
                      Ext.newt(), cost.comp(), Gsq.norm(), Gsq.gam(), Gsq.wei() 
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Appendix A 

Asymptotic Expansions for the Polygamma Functions 

The Psi function is defined as the derivative of the log gamma function. The 
recursion formula for the Gamma function translates into a like formula for the Psi 
function. Thus, 

 ψ(z)  =  d(ln(Γ(z))/dz     and     ψ(z+1) = ψ(z) + 1/z.                            (A.1) 

Asymptotic expansions are especially advantageous because high precision is available 
using few terms, provided z is large. This can be easily exploited in computations 
involving the Polygamma functions. Thus, if z + r is sufficiently large to obtain 
appropriate accuracy, then use 

 ψ(z)  =  ψ(z + r) – 1/z – 1/(z + 1) – … – 1/(z + r – 1)                           (A.2) 

 ψ′(z)  =  ψ′(z + r) + 1/z2 + 1/(z + 1)2 + … + 1/(z + r – 1)2                    (A.3) 

and so on. It remains to record the expansions for large z, [Abramowitz and Stegun] 

 ψ(z)  =  ln(z) – 1/2z – 1/ 12z2 + 1/120z4 – 1/252z6 + …                       (A.4) 

 ψ′(z)  =  1/z + 1/2z2 + 1/6z3 – 1/30z5 + 1/42z7 – 1/30z9 + …                (A.5) 

 ψ′′(z)  =  −1[1/z2 + 1/z3 + 1/2z4 − 1/6z6 + 1/6z8 − 3/10z10 +] 

 ψ′′′(z)  =  2/z3 + 3/z4 + 2/z5 − 1/z7 + 4/3z9 − 3/z11 + 

 ψ(n)(z)  =  (–1)n+1 [(n–1)!/zn + n!/2zn+1 + ΣB2k (2k + n – 1)!/(2k)!z2k+n](A.6) 

and {B2k} are the Bernoulli numbers. See [Abramowicz and Stegun]. 

 The error in these expansions is sized by the first term ignored. They work best 
for z large, say z > 10. For smaller values of z one should make adjustments based on the 
recursive formula for the gamma function. 
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  ψ′′(z+a)  =  
a 1

3

0

12 ( )
z j

−

+∑  

  ψ′′′(z+a)  =  
a 1

4

0

16 ( )
z j

−

−
+∑ . 

For these reasons, two programs have been written: psi.bas (z) takes a vector 
argument z and returns three rows of output, the function and its first two derivatives. For 
small values of z, one can choose an integer a and call psi (z,a) to achieve precision based 
on (A.7). The default value of a is 10. Adjustments are made for all components of z less 
than a. 
 

On occasion we require the derivatives of the gamma function. These are 
obtainable from the psi function and its derivatives. The first four are as follows. 
 
 Γ'(z)  =  Γ(z) ψ(z) 
 Γ''(z)  =  Γ(z){ ψ'(z) + ψ2(z) } 
 Γ'''(z)  =  Γ(z){ψ''(z) + 3ψ'(z)ψ(z) + ψ3(z)}                                                      (A.8) 
 Γiv(z)  =  Γ(z){ψ'''(z) + 4ψ''(z)ψ(z) + 6ψ'(z)ψ2(z) + 3[ψ'(z)]2 + ψ4(z)}. 
 
Useful relationships 
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S-Plus Codes 
 
psi 
function(z, a = 10){ 
# fname is psi; programmer; R. Read 
# derivative log gamma and two subsequent derivatives 
# Uses recursive formula for min(z) < a and the 
# psi.bas function for large z (asymptotic expansion) 
 a <- floor(a) 
 s <- a - floor(min(z)) 
 j <- 1:s 
 if(s > 0) { 
  temp0 <- apply(1/outer(z - 1, j, "+"), 1, sum) 
  temp1 <- apply(1/outer(z - 1, j, "+")^2, 1, sum) 
  temp2 <- apply(1/outer(z - 1, j, "+")^3, 1, sum) } 
 else { 
  temp0 <- temp1 <- temp2 <- 0} 
 if(s <= 0) 
  s <- 0 
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 out <- psi.bas(z + s) 
 out[1,  ] <- out[1,  ] - temp0 
 out[2,  ] <- out[2,  ] + temp1 
 out[3,  ] <- out[3,  ] - 2 * temp2 
 out} 
 
psi.bas 
function(z){ 
# fname is psi.bas; programmer:  R. Read 
# asymptotic expansion for first three derivatives 
# of the log gamma function; z may be a vector. 
 K <- length(z) 
 coef0 <- c(-2, -12, 120, -252) 
 m0 <- matrix(rep(coef0, rep(K, 4)), ncol = 4) 
 z0 <- c(z, z^2, z^4, z^6) 
 coef1 <- c(1, 2, 6, -30, 42, -30) 
 m1 <- matrix(rep(coef1, rep(K, 6)), ncol = 6) 
 z1 <- c(z, z^2, z^3, z^5, z^7, z^9) 
 coef2 <- c(-1, -1, -2, 6, -6) 
 m2 <- matrix(rep(coef2, rep(K, 5)), ncol = 5) 
 z2 <- c(z^2, z^3, z^4, z^6, z^8) 
 out <- log(z) + apply(1/(m0 * z0), 1, sum) 
 out <- rbind(out, apply(1/(m1 * z1), 1, sum)) 
 out <- rbind(out, apply(1/(m2 * z2), 1, sum)) 
 out} 
 
g1 
function(z){ 
# fname is g1 
# first derivative of the gamma function 
 out <- gamma(z) * psi(z)[1,  ] 
 return(out)} 
 
g2 
function(z){ 
# fname is g2 
# second derivative of the gamma function 
 tmp <- psi(z) 
 out <- gamma(z) * (tmp[2,  ] + tmp[1,  ]^2) 
 return(out)} 
 
g3 
function(z){ 
# fname is g3 
# third derivative of the gamma function 
 tmp <- psi(z) 
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 out <- gamma(z) * (tmp[3,  ] + 3 * tmp[2,  ] * tmp[1,  ] + tmp[1,  ]^3) 
 return(out)} 
 
g4 
function(z){ 
# fname is g4 
# fourth derivative of the gamma function 
 tmp <- psi(z) 
 out <- gamma(z) * (tmp[4,  ] + 4 * tmp[3,  ] * tmp[1,  ] 

           + 6 * tmp[2,  ] * tmp[1,  ]^2 + 4 * tmp[2,  ]^2 + tmp[1,  ]^4) 
 return(out)} 
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Appendix B 
 

Analysis for Computational Support of the Weibull Distribution 
 

This appendix contains the numerical analysis and S-Plus code for executing the 
support functions developed in Chapter 4. Fundamental support functions for the Weibull 
distribution are primitives in the S-Plus system. Capabilities for computing the psi and 
gamma functions and their derivatives are contained in Appendix A. The fact that  
Y  =  (X/β)α has an Exp(1) distribution when X ~ Weibull(α, β) has been exploited and 
the properties of the Exponential distributions are familiar. 
 

It remains to describe the computational techniques used to compute maximum 
likelihood estimates for the shape and scale parameters (α, β) under complete and 
censored sampling. 
 
Complete Samples 
 
 The maximum likelihood estimates are computed using the natural iteration 
function described in Chapter 4. The method of moments estimates are used for 
initialization. The Newton-Raphson Iteration (B.1) is used to find these latter estimates. 
The functions utilized are 
 
   weibull.mle(); weibull.mm(); weibull.est(); 
 
the last of these functions calls the previous two and displays both kinds of estimates. 
 
Their use is illustrated in Section 3 and the S-plus listings appear in the S-Plus section of 
this appendix. 
 
Right-Censored Samples 
 
 The formulae in Section 4d require computational development. The transform 
the extreme value distribution enables one to execute a one-dimensional search for the 
parameter b, see (4.24) and (4.28). However, it appears that the Newton-Raphson scheme 
undergoes considerable oscillation when applied in this setting and some modifications 
are in order. The basic idea is to use Newton-Raphson until the function h of (4.28) 
oscillates and then switch to a bisection search.  
 
 A little more detail can be useful. The basic iteration is to use 
 
  bn+1  =  bn − h(bn) / h'(bn)                                                                       (B.1) 
 
and record the two most recent pairs, call them (b1, h1) and (b2, h2). At each step check 
the sign of the product h1×h2; when it turns negative, change to the bisection search. I.e., 



 51

set b  =  (b1 + b2)/2; compute h(b); 
if h×h1 < 0 set h2  =  h and b2  =  b; otherwise set h1  =  h and b1  =  b;                        (B.2) 
repeat until no change in b, or h ≈0, or both. 
 
The S-Plus function that does this is called Newt.wei(). 
 
 The initialization exploits Equation (4.30). There we have a straight-line 
relationship between v and y, which can be expressed using a least squares fit. Then set  
b  =  1/slope and u  =  x-intercept. The conversion of {vi} to {yi} is accomplished using 
the Kaplan-Meier estimator for the survivor function. It was decided to write a simple 
code to accomplish this. 
 
 The basic Kaplan-Meier estimation has the following rules. Pool and order the 
uncensored and censored times, call them { }ix∗ . Let di be the number that died at ix∗ , i.e., 
exclusive of those that were censored at that value. Set n0  =  n and ni  =  ni-1 – di for all of 
the unique values of { }ix∗ . These are the number at risk values. Then the estimated 
survivor function is, at the data points, 
 

  S( ix∗ )  =  j j
j i

j

n d
n<

−
∏ .                                                                         (B.3) 

 
These details are executed by the functions init.wei() and  KapM(); listings below. 
 
S-Plus Codes 
 
weibull.mle 
function(x, a0 = 1, ep = 0.0001){ 
# fname is weibull.mle 
# natural iteration function; a0 is initial shape parameter 
# output is the pair (shape, scale) 
 lxb <- mean(log(x)) 
 a <- a0 
 repeat { 
  ainv <- mean(log(x) * x^a)/mean(x^a) - lxb 
  a <- 1/ainv 
  if(abs(a - a0) < ep) 
   break 
  a0 <- a 
 } 
 b <- (mean(x^a))^(1/a) 
 out <- c(a, b) 
 out} 
 
weibull.mm 
function(x, a0 = 1, ep = 0.0001){ 
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# fname is weibull.mm 
# returns the method of moments estimator for the shape (a) and scale (b) 
# parameters of the weibull distribution. The initialization is a0. The data are x. 
 xb <- mean(x) 
 s2 <- var(x) 
 a <- a0 
 repeat { 
  g <- lgamma(1 + 2/a) - 2 * lgamma(1 + 1/a) - log(1 + s2/xb^2) 
  gp <- (psi(1 + 2/a)[1] - psi(1 + 1/a)[1]) * (-2/a^2) 
  a <- a0 - g/gp 
  if(a < 0) 
   a <- 0.1 
  if(abs(a - a0) < ep) 
   break 
  a0 <- a } 
 b <- xb/gamma(1 + 1/a) 
 out <- c(a, b) 
 out}  
 
weibull.mle 
function(x, a0 = 1, ep = 0.0001) 
{# fname is weibull.mle 
# natural iteration function; a0 is initial shape parameter 
# output is the pair (shape, scale) 
 lxb <- mean(log(x)) 
 a <- a0 
 repeat { 
  ainv <- mean(log(x) * x^a)/mean(x^a) - lxb 
  a <- 1/ainv 
  if(abs(a - a0) < ep) 
   break 
  a0 <- a } 
 b <- (mean(x^a))^(1/a) 
 out <- c(a, b) 
 out} 
 
weibull.est 
function(x){ 
# fname is weibull.est 
# Input is a random sample from the Weibull distribution. 
# Output has five components: shape and scale parameter estimates 
# using max likelihood, sample size, shape and scale parameter 
# estimates using method of moments 
 n <- length(x) 
 mm <- weibull.mm(x) 
 ml <- weibull.mle(x) 
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 out <- c(ml, n, mm) 
 names(out) <- c("shape:mle", "scale:mle", "samp size", "shape:mm", "scale:mm") 
 out} 
 
Newt.wei 
function(x, t, param, ep = 0.0001){ 
# fname is Newt.wei 
# Newton-Raphson method, then bisection search used to find mle 
# for the Weibull distribution using the extreme value distribution technique. 
# Data input is (x, t); param initialization is (u, b), b>0 
# output is (u, b, alph, beta). r is cardinality of uncensored set 
 r <- length(x) 
 v <- log(x) 
 vb <- mean(v) 
 lt <- log(t) 
 b <- param[2] 
 u <- param[1] 
 vv <- c(v, lt) 
 b2 <- b1 <- b 
 h1 <- h2 <- 0 
 j <- 1 
 flag <- 1 
 repeat { 
  if(flag == 1) { 
   D <- sum(exp(vv/b)) 
   N <- sum(vv^2 * exp(vv/b)) 
   A <- sum(vv * exp(vv/b)) 
   h <- A/D - b - vb 
   hp <- - N/(D * b^2) + A^2/(D * b)^2 - 1 
   b <- b1 - h/hp 
   if(b <= 0) 
    b <- 0.01 
   if(max(abs(h), abs(b - b1)) < ep) 
    break 
   if(j/2 != round(j/2)) { 
    b1 <- b 
    h1 <- h } 
   if(j/2 == round(j/2)) { 
    b2 <- b 
    h2 <- h } 
   j <- j + 1 
   if(sign(h2 * h1) < 0) 
    flag <- 0} 
  if(j == 25) 
   break 
  if(flag == 0) { 
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   b <- (b1 + b2)/2 
   D <- sum(exp(vv/b)) 
   A <- sum(vv * exp(vv/b)) 
   h <- A/D - b - vb 
   if(sign(h * h1 < 0)) { 
    h2 <- h 
    b2 <- b } 
   if(sign(h * h2 < 0)) { 
    h1 <- h 
    b1 <- b } 
   if(max(abs(h), abs(b - b1)) < ep) 
    break 
   j <- j + 1 
   if(j == 50) 
    break} } 
 u <- b * log(D/r) 
 alph <- 1/b 
 beta <- exp(u) 
 out <- c(u, b, alph, beta, flag) 
 names(out) <- c("u","b",”alph","beta","flag") 
 return(out)} 
 
init.wei 
function(x, t){ 
# fname is init.wei 
# provides initial estimates for the extreme value distribution 
# i.e., y = log(weibull), parameters (u, b). The pair (x, t) 
# represents n observations (duplicate values required) where 
# the 't' values are the censoring values. Output is a four vector; 
# first two are (u, b) and the last two are (alpha, beta). 
# lsfit to the log survival fnc technique is utilized. 
 S <- KapM(x, t) 
 w <- log( - log(S)) 
 y <- sort(log(c(x, t))) 
 yy <- unique(y) 
 yb <- mean(yy) # w <- lsfit(yy, S)$coef 
 slope <- sum(w * (yy - yb))/sum((yy - yb)^2) 
 interc <- mean(w) - slope * yb 
 b <- 1/slope 
 u <- - b * interc 
 alph <- slope 
 beta <- exp(u) 
 names(out) <- c("u", "b", "alph", "beta") 
 out <- c(u, b, alph, beta) 
 return(out)} 
KapM 
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function(x, t){ 
# fname is KapM 
# produces the Kaplan-Meier estimate of the survivor function for 
# data c(x, t) where x are the actual death times and t are the 
# censored values. 
 y <- sort(c(x, t)) 
 yy <- unique(y) 
 dd <- d <- tab <- table(y) # number of deaths at y 
 n <- length(y) 
 k <- length(yy) 
 nr <- n - tab # initial number at risk 
 tt <- unique(t) 
 ind <- (1:k)[tt == yy] 
 tabt <- table(tt) 
 kk <- length(ind) 
 if(kk > 0) { 
  for(j in 1:kk) 
   dd[ind[j]] <- d[ind[j]] - tabt[j] } 
 SS <- (nr - dd)/nr 
 S <- cumprod(SS) 
 return(S)} 
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Appendix C 
 

Implementation of the General Censored Data Estimation Scheme 
 

The iterative estimation scheme described in Section 2 has been implemented for 
two out of three distributions, namely the gamma and lognormal distributions. The case 
of the Weibull distribution can be managed more directly as described in Section 4 and 
Appendix B. 
 

Much of the structure can be treated generally. Because S-Plus functions have the 
capability to accept other functions as input, it is possible to write generic code for the 
process. Such is exploited for the values of the log likelihood, the golden section search, 
and the change of gradient direction effected by a single iteration of the Newton-Raphson 
scheme. The name Itest is short for iterative estimation. 
 

The basic call is 
 
 Paramest <- Itest( x, t, th0, Newt, Llik, ep  =  .0001), 
 
where x is the set of uncensored survival times; t is the set of right-censored times 
realized; th0 is the initialization point in the parameter space; Newt is a generic function 
that produces an updated value for the parameter; and Llik is a generic function that 
computes the log likelihood for the targeted distribution family. The value of ep is used to 
control the precision of the estimate. Of course, the inputs to Newt and Llik must be 
generated by the parent function. 
 

The function also calls a golden section search function. Its role is to seek the best 
value for th along the line segment connecting th previous and the output of Newt. 
Having made that selection, the parent program calls Newt to find a new direction for 
search. The output has the structure 
 
 Paramest  =  th[1], th[2], N.iter, 
 
where N.iter is the number of cycles through Newt. 
 
S-Plus Codes 
 
Itest 
function(x, t, th0, Newt, Llik, ep  =  0.0001, N.iter  =  50) 
{# fname is Itest 
# alternates the use of golden section and Newton-Raphson 
# to find 2-D mle's. The input N.iter puts a cap on the 
# number of iterations of Newton-Raphson. 
 recth <- NULL 
 k <- 1 
 repeat {if(k == 50) break 
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  th1 <- Newt(x, t, th0) 
  if(max(abs(th0 - th1)) < ep) 
   break 
  recth <- rbind(recth, c(th0, th1)) 
  k <- k + 1 
  th0 <- Golden(x, t, th0, th1, Llik)[[1]]} 
 out <- c(recth[k - 1, 3:4], round(k)) 
 if(k == N.iter) 
  out <- c("No convergence") 
 return(out)} 
 
Golden 
function(x, t, th0, th1, Llik, ep1 = 0.5) 
{# fname is Golden 
# performs the golden section search along the direction 
# th0 to th1. The function returns the value of th that 
# maximizes Llik in that direction. The return is the 
# new th and its (proportional) distance from th0. 
# This function is called by Itest, from which it gets ep 
 p1 <- c(0.618, 0.382) 
 p2 <- rev(p1) #thinit <- cbind(th0, th1) 
 t0 <- th0 
 len0 <- sqrt(sum((th1 - th0)^2)) 
 j <- 1 
 repeat {j <- j + 1 
  th4 <- p1 * th0 + p2 * th1 
  th6 <- p2 * th0 + p1 * th1 
  th <- cbind(th0, th4, th6, th1) 
  L <- Llik(x, t, th) 
  if(j > 5) { 
   ep2 <- (max(L) - min(L))/20 
   ep2 <- max(ep2, ep) 
   ep1 <- min(ep1, ep2)} 
  if(j == 100) 
   break 
  rnk <- rank(L) # print(L) 
  if(rnk[3] == 4) 
   th0 <- th4 
  if(rnk[2] == 4) 
   th1 <- th6 
  if(rnk[4] == 4) 
   th0 <- th4 
  if(rnk[1] == 4) 
   th1 <- th6 
  if(max(abs(th0 - th1)) < ep1) break # print(c(th0, th1))} 
 len1 <- sqrt(sum((th1 - t0)^2)) 
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 out <- list(th = th1, prop = len1/len0) 
 if(j == 100) { 
  out <- c("Too many Golden iterations")} 
 return(out)} 
 
Input functions when using the Gamma distribution. 
 
Begin with the computation of the initializing point. 
 
init.gam 
function(x) 
{# fname is init.gam 
# initializes the estimates using the method of moments applied to 
# the uncensored part of the data 
# x <- dat[dat[, 2] == 1, 1] 
 xb <- mean(x) 
 s2 <- var(x) 
 lam <- xb/s2 
 alph <- lam * xb 
 out <- c(alph, lam) 
 out} 
 
Llik.gam 
function(x, t, th) 
{# fname is Llik.gam 
# computes the log likelihood for censored gamma data 
# x in the uncensored life lengths, t is the censored set 
# th is a matrix of parameter values; 
# first row is alph, second is lam 
 if(length(th) == 2) th <- matrix(th, 2, 1) 
 k <- ncol(th) 
 r <- length(x) 
 lg <- lgamma(th[1,  ]) 
 lx <- sum(log(x)) 
 sx <- sum(x) 
 L <- rep(0, k) 
 for(i in 1:k) { 
  S <- 1 - pgamma(th[2, i] * t, th[1, i], 1) 
  L[i] <- r * (th[1, i] * log(th[2, i]) - r * lg[i]) + 

(th[1, i] * -1) * lx - th[2, i] * sx + sum(log(S))} 
 return(L)} 
 
Newt.gam 
function(x, t, th) 
{# fname is Newt.gam 
# program executes a single iterative update of th (theta) 
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# for the mle estimation of th (alph, lam) for censored gamma 
# distribution data; x is the set of observed life times and t 
# the set of censored (right) times. 
 alph <- th[1] 
 lam <- th[2] 
 ps <- psi(alph) 
 r <- length(x) 
 S <- Surv.gam(alph, lam * t, 20, ep = 1e-005) 
 La <- r * (log(lam) - ps[1]) + sum(log(x)) + sum(S[2,  ]/S[1,  ]) 
 f <- dgamma(lam * t, alph, 1) 
 Slam <-  - t * f 
 Ll <- (r * alph)/lam - sum(x) + sum(Slam/S[1,  ]) 
 Laa <-  - r * ps[2] + sum(S[3,  ]/S[1,  ] - (S[2,  ]/S[1,  ])^2) 
 Salphlam <-  - t * f * (log(lam * t) - ps[1]) 
 Slamlam <-  - t^2 * f * ((alph - 1)/(lam * t) - 1) 
 Lal <- r/lam + sum(Salphlam/S[1,  ] - (S[2,  ] * Slam)/S[1]^2) 
 Lll <- ( - r * alph)/lam^2 + sum(Slamlam/S[1,  ] - (Slam/S[1,  ])^2) 
 Lt <- c(La, Ll) 
 H <- matrix(c(Laa, Lal, Lal, Lll), 2, 2) 
 th0 <- th 
 th <- th0 - solve(H, Lt) # print(th) 
 if(th[1] < 0) 
  th[1] <- 0.01 
 if(th[2] < 0) 
  th[2] <- 0.01 
 dist <- max(abs(th - th0)) # print(dist) 
 return(th)} 
 
The function Surv.gam() is described in Appendix D. 
 
Lp.gam 
function(x, t, th0) 
{# fname is Lp.gam 
# creates the gradient vector Lp and the Hessian matrix H 
# for the censored gamma family sampling 
 alph <- th[1] 
 lam <- th[2] 
 S <- Surv.gam(alph, lam * t, a0 = 20) 
 xm1 <- (log(lam * x) - psi(alph)[1,  ])/lam 
 xm2 <- alph/lam - x 
 tm1 <- (S[2,  ] - psi(alph)[1,  ])/S[1,  ] 
 tm2 <- ( - t * dgamma(lam * t, alph))/S[1,  ] 
 Lp1 <- sum(xm1) + sum(tm1) 
 Lp2 <- sum(xm2) + sum(tm2) 
 H11 <- sum(xm1^2) + sum(tm1^2) 
 H22 <- sum(xm2^2) + sum(tm2^2) 
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 H12 <- sum(xm1 * xm2) + sum(tm1 * tm2) 
 out <- list(Lp = c(Lp1, Lp2), H = matrix(c(H11, H12, H12, H22), 2, 2)) 
 out} 
 
Input functions when using the Lognormal distribution. 
 
Initialize with mean(log(x)) and stdev(log(x)) 
 
Llik.logn 
function(x, t, th) 
{# fname is Llik.logn 
# Computes the log likelihood for censored log normal data 
# x is the set of uncensored life lengths, t is the censored set. 
# th is the matrix of parameter values; first row is mu, 
# second is sigma. The output is a set of log likelihood values. 
 if(length(th) == 2) th <- matrix(th, 2, 1) 
 k <- ncol(th) 
 r <- length(x) 
 d <- length(t) 
 z1 <- outer(log(x), th[1,  ], "-")/th[2,  ] 
 z2 <- outer(x, th[2,  ], "*") 
 cc <- log(2 * pi) 
 L1 <- apply( - log(z2) - 0.5 * cc - 0.5 * z1, 2, sum) 
 w <- outer(log(t), th[1,  ], "-")/th[2,  ] 
 Sn <- matrix(1 - pnorm(w), d, k) 
 L2 <- apply(log(Sn), 2, sum) 
 L <- L1 + L2 
 return(L)} 
 

Newt.logn 
function(x, t, th) 
{# fname is Newt.logn 
# program executes a single iterative update of th (theta) 
# for the mle estimation of th (mu, sig) for censored lognormal 
# distribution data; x is the set of observed life times and t 
# the set of (right) censored times. 
 mu <- th[1] 
 sig <- th[2] 
 out <- Lp.logn(x, t, th) 
 Lt <- out[[1]] 
 H <- out[[2]] 
 th0 <- th 
 th <- th0 - solve(H, Lt) # print(th) 
 if(th[2] < 0) 
  th[2] <- 0.01 
 dist <- max(abs(th - th0)) # print(dist) 
 return(th)} 
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Lp.logn 
function(x, t, th0) 
{# fname is Lp.logn 
# Creates the gradient vector Lp and the Hessian matrix H 
# for the censored lognormal family sampling. 
# The output is a list; Lp and H 
 mu <- th0[1] 
 sig <- th0[2] 
 z <- (log(x) - mu)/sig 
 w <- (log(t) - mu)/sig 
 fw <- dnorm(w) 
 Sw <- 1 - pnorm(w) 
 Lp1 <- sum(z) + sum(fw/(sig * Sw)) 
 Lp2 <- sum((z^2 - 1)/sig) + sum((w * fw)/(sig * Sw)) 
 H11 <- sum((z^2 - 1)/sig^2 - z^2) + sum((w * fw)/(sig^2 * Sw)) 
 H11 <- H11 - sum(fw/(sig * Sw)^2) 
 H12 <- sum((z * (z^2 - 3))/sig^2 - (z * (z^2 - 1))/sig) 
 H12 <- H12 - sum(((w^2 - 1) * fw)/(sig^2 * Sw)) 
 H22 <- sum(2 * (1 - z - 3 * z^2 + z^3) - ((z^2 - 1)/sig)^2) 
 H22 <- H22 + sum((w * (w^2 - 2) * fw)/(sig^2 * Sw) - ((w * fw)/(sig * Sw))^2) 
 out <- list(Lp = c(Lp1, Lp2), H = matrix(c(H11, H12, H12, H22), 2, 2)) 
 return(out)} 
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Appendix D 
 

Derivatives of the Incomplete Gamma Function 
 
 The function Surv.gam() is needed in Section 5 for use in the parameter 
estimation programs for censored gamma data. The analysis is too lengthy to be included 
there and the development may have general interest. Basically we need to compute the 
first and second derivatives of the Incomplete Gamma function with respect to the shape 
parameter. 
 
 The formulas used are taken from [Abramowicz and Stegun] and their notation is 
adopted. We focus on [Abramowicz and Stegun, (6.5.1), 6.5.4), and (6.5.29)] 
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The power series in (D.2) plays a key role. It will be used for values of x smaller than a. 
With this understanding, let us develop a crude, but useful, bound for the remainder after 
n terms. 
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This inequality allows one to choose n given a, x with x < a so that the power series can 
be made as precise as desired. 
 

The issue of x larger than a is managed by the recursive formula [Abramowicz 
and Stegun, (6.5.21)] 
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Viewing the goal as the computation of P(a-r, x), one may always choose r so that x < a 
and then the power series portion can finish the job. Such is the tactical plan. Both (D.2) 
and (D.5) may be differentiated termwise. 
 

 
0

( , ) ( 1)
( 1)

j
x

a j

xa x e a j
a j

γ ∞∗ −
=

= − Ψ + +
Γ + +∑                                                    (D.6) 

 

 2
0

( , ) [ ( 1) ( 1)]
( 1)

j
x

aa j

xa x e a j a j
a j

γ ∞∗ −
=

′= Ψ + + − Ψ + +
Γ + +∑                           (D.7) 

 

1
( ) [ln( ) ( 1 )]

( 1 )

a j
rx

a j

xInc r e x a j
a j

−
−

=
= − Ψ + −

Γ + −∑                                          (D.8) 

 
2

1
( ) {[ln( ) ( 1 )] ( 1 )}

( 1 )

a j
rx

aa j

xInc r e x a j a j
a j

−
−

=
′= − Ψ + − − Ψ + −

Γ + −∑ .            (D.9) 

 
Using (D.1) and (D.2) we can express the survival function and derivatives of the 

standard gamma random variable. 
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Our goal is to orchestrate these formulas into a computational package usable for the 
censored sampling likelihood equations. Moreover, the package should accept vector 
input for x. The smaller values of x are easily managed using the power series. For other 
values it is wise to use the tactic of shifting to larger values of the parameter a using 
(D.5), (D.8), and (D.9). Accordingly, we partition the (a, x) plane into three horizontal 
strips 
 
 v1: 0 <  x  < 8; v2: 8 ≤  x  < a0; v3: a0  ≤  x, 
 
and a0 can be selected for power series truncation error control. Our programs use  
a0  =  20. Further, each strip is partitioned selectively for purposes of invoking the tactic 
of shifting to larger values of the parameter a. The rule in place is 
 
 v1: a  <  a0; v2: a  <  2a0; v3: a  <  3a0. 
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The main program that executes these rules is Surv.gam(). Sixteen terms are used 
in the truncate power series. For these, Equations (D.10), (D.11), and (D.12) are 
computed using the functions 

 
 surv.gam(): surva.gam(); survaa.gam(), respectively. 
 

When it is appropriate to shift to larger values of a, we invoke (D.5), (D.8), and 
(D.9). These functions are called 
 
 trans1(); trans2(); trans3(), respectively. 
 

The output of Surv.gam is a three-row matrix and number of columns equal to the 
cardinality of the data x. The three rows contain the zeroth, first and second derivatives. 
 
S-Plus Codes 
 
Surv.gam 
function(a, x, a0 = 20, ep = 1e-009) 
{# fname is Surv.gam 
# Integrates the programs surva.gam, survaa.gam 
# and trans2, trans3 to comput the survival function 
# and its derivatives wrt a and aa for the standard 
# gamma distribution with shape parameter a 
# and vector x. The input ep is for precision control. 
 len <- length(x) 
 S <- 1 - pgamma(x, a) 
 v1 <- x < 8 
 v2 <- 8 <= x & x < a0 
 v3 <- a0 <= x 
 Sa <- Saa <- rep(0, len) 
 if(sum(v1 == T) > 0) { 
  if(a >= a0) { 
   Sa[v1] <- surva.gam(a, x[v1], a0) 
   Saa[v1] <- survaa.gam(a, x[v1], a0)} 
  else { 
   r1 <- ceiling(a0 - a) 
   Sa[v1] <- surva.gam(a + r1, x[v1], a0) - trans2(a, x[v1], r1) 
   Saa[v1] <- survaa.gam(a + r1, x[v1], a0) - trans3(a, x[v1], r1)}} 
 if(sum(v2 == T) > 0) { 
  if(a >= 2 * a0) { 
   Sa[v2] <- surva.gam(a, x[v2], a0) 
   Saa[v2] <- survaa.gam(a, x[v2], a0)} 
  else { 
   r2 <- ceiling(2 * a0 - a) 
   Sa[v2] <- surva.gam(a + r2, x[v2], a0) - trans2(a, x[v2], r2) 
   Saa[v2] <- survaa.gam(a + r2, x[v2], a0) - trans3(a, x[v2], r2)}} 



 65

 if(sum(v3 == T) > 0) { 
  if(a >= 3 * a0) { 
   Sa[v3] <- surva.gam(a, x[v3], a0) 
   Saa[v3] <- survaa.gam(a, x[v3], a0)} 
  else { 
   r3 <- ceiling(3 * a0 - a) 
   Sa[v3] <- surva.gam(a + r3, x[v3], a0) - trans2(a, x[v3], r3) 
   Saa[v3] <- survaa.gam(a + r3, x[v3], a0) - trans3(a, x[v3], r3)}} 
 out <- rbind(S, Sa, Saa) 
 out} 
 
surv.gam 
function(a, x, a0) 
{# fname is surv.gam 
# creates first 16 terms of the power series expansion of 
# the tail of the Incomplete gamma function. Useful 
# when a is large; tmp is neg of gammastar 
 ind <- 0:15 
 k <- length(x) 
 X <- outer(x, ind, "^") 
 fac <- matrix(gamma(a + 1 + ind), k, 16, byrow = T) 
 tmp <- exp( - x) * x^a * apply(X/fac, 1, sum) 
 S <- 1 - tmp 
 S} 
 
surva.gam 
function(a, x, a0) 
{# fname is surva.gam 
# creates first 16 terms of the power series expansion of 
# the derivative of the Incomplete gamma function. Useful 
# when a is large; tmp is neg of gammastar sub a 
 ind <- 0:15 
 k <- length(x) 
 X <- outer(x, ind, "^") 
 fac <- matrix(psi(a + 1 + ind)[1,  ]/gamma(a + 1 + ind), k, 16, byrow = T) 
 tmp <- exp( - x) * x^a * apply(X * fac, 1, sum) 
 Sa <- log(x) * ( - pgamma(x, a)) + tmp 
 Sa} 
 
survaa.gam 
function(a, x, a0) 
{# fname is survaa.gam 
# deals with Saa for a large. Includes the sum of 
# the first 16 terms in the power series expansion 
# of x to the a times gammastar sub aa 
 ind <- 0:15 
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 k <- length(x) 
 X <- outer(x, a + ind, "^") # Pa <- exp( - x) * apply(X/matrix(gamma(a + 1 + 
ind), k, 16, byrow = T), 1, sum) 
 brac <- outer(log(x), psi(a + 1 + ind)[1,  ], "-") 
 den <- matrix(gamma(a + 1 + ind), k, 16, byrow = T) 
 tmp <- matrix(psi(a + 1 + ind)[2,  ], k, 16, byrow = T) 
 Saa <- exp( - x) * apply((X * (brac^2 - tmp))/den, 1, sum) 
 Saa} 
 
trans1 
function(a, x, r) 
{# fname is trans1 
# finite series transition of standard gamma cdf 
# from small shape parameter to large shape parameter. 
# The output is P(a-r,x)-P(a,x)= Inc 
 k <- length(x) 
 ind <- 1:r 
 N <- length(ind) 
 X <- outer(x, a - ind, "^") 
 den <- matrix(gamma(a + 1 - ind), k, N, byrow = T) 
 S <- Inc <- exp( - x) * apply(X/den, 1, sum) 
 S} 
 
trans2 
function(a, x, r) 
{# fname is trans2 
# finite series transition of the derivative of the standard 
# gamma survivor function from small shape parameter to large 
# shape parameter. The output is Sa(a+r,x)-Sa(a,x)=Inca 
 k <- length(x) 
 ind <- 1:r 
 first <- matrix(0, r, k) 
 for(j in 1:k) 
  first[, j] <- dgamma(x[j], a + ind) 
 sec <- matrix(0, r, k) 
 for(j in 1:k) 
  sec[, j] <- dgamma(x[j], a + ind) * psi(a + ind)[1,  ] 
 Sa <- Inca <- log(x) * apply(first, 2, sum) - apply(sec, 2, sum) 
 Sa} 
trans3 
function(a, x, r) 
{# fname is trans3 
# finite series transition of the 2nd derivative of the standard 
# gamma survivor function from small shape parameter to large 
# shape parameter. The output is Saa(a+r,x)-Saa(a,x)=Inca 
 k <- length(x) 
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 ind <- 1:r 
 dens <- matrix(0, k, r) 
 brac <- outer(log(x), psi(a + ind)[1,  ], "-") 
 for(i in 1:k) 
  dens[i,  ] <- dgamma(x[i], a + ind) 
 sec <- matrix(psi(a + ind)[2,  ], k, r, byrow = T) 
 Saa <- Incaa <- apply(dens * (brac^2 - sec), 1, sum) 
 Saa} 
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Appendix E 
 

Listings of Miscellaneous Code 
 
gam.est 
function(x, ep = 1e-006) 
{# fname is gam.est; programmer: R. Read 
# returns the mle estimates for the gamma distribution 
# base upon the data x. Newton-Raphson iteration. 
# output is maximum likelihood for shape, rate, n, method 
# of moments for shape, rate 
 n <- length(x) 
 xb <- mean(x) 
 lnbx <- mean(log(x)) 
 ss <- var(x) 
 rate <- xb/ss 
 lam0 <- rate # initialize with meth of moments ests. 
 shape <- xb^2/ss 
 x0 <- lnbx - log(xb) 
 alph <- shape 
 repeat { 
  r0 <- shape 
  lam <- shape/xb 
  g <- log(shape) + x0 - psi(shape)[1,  ] 
  gp <- 1/shape - psi(shape)[2,  ] 
  shape <- shape - g/gp 
  if(abs(shape - r0) < ep) 
   break} 
 rate <- shape/xb 
 out <- c(shape, rate, n, alph, lam0) 
 names(out) <- c("alpha-mle", "lambda-mle", "n", "alpha-mm", "lambda-mm") 
 out} 
 
 
The function ellipse returns a three-column matrix. Column 1 contains the horizontal and 
the other two columns provide the two lobes for the ellipse. The user must construct the 
plot. 
 
ellipse 
function(q, m, d, n0 = 100) 
{# fname is ellipse. Revised December 2002 
# q is the matrix of the quadratic form (2x2): (x, y)q(x, y)' 
# m is the centering vector; (m[x], m[y]) 
# d is the (squared) distance value for the contour 
# n0 is the half-size of the number of points in each lobe 
# of the ellipse. 
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 a <- q[1, 1] 
 b <- q[1, 2] 
 c1 <- q[2, 2] 
 det <- a * c1 - b * b 
 x0 <- sqrt((c1 * d)/det) - 1e-008 #  =  max(x); latter term helps insure that the 
fuzz won't stop the program 
 x <- sqrt((seq(1, n0, 1) * x0)/n0) * sqrt(x0) # Refines the partition for the 
extreme values of x. 
 x <- c( - rev(x), 0, x) 
 rad <- sqrt(d * c1 - det * x * x) 
 y1 <- ( - b * x)/c1 + rad/c1 
 y2 <- ( - b * x)/c1 - rad/c1 
 x <- x + m[1] 
 y1 <- y1 + m[2] 
 y2 <- y2 + m[2] 
 z <- matrix(c(x, y1, y2), ncol = 3) 
 z} 

 
 
The following function produces Figure 3.1. Once executed, the user must point the 
cursor to a place in the lower right space of the plots and click. This will print the 
legend and close out the function. 
 
exp1.lnorm 
function(mu = 0, sig = 1) 
{# fname is exp1.lnorm 
# survival functions plotted to compare Exp(1) w/lognormal(mu, sig) 
 x <- c(seq(0.02, 0.55, 0.01), seq(0.56, 3.6, 0.02)) 
 y <- dnorm((log(x) - mu)/sig)/(x * sig) 
 Sl <- 1 - pnorm(log(x) - mu)/sig 
 he <- rep(1, length(x)) 
 xx <- x[ - (1:27)] 
 Se <- exp( - xx) 
 yy <- exp( - xx) 
 par1 <- par 
 par(mfrow = c(3, 2)) 
 plot(x, y, ylim = c(0, 0.75), ylab = "density function", type = "l") 
 lines(xx, yy, lty = 4) 
 title(main = "Compare Density functions    ") 
 plot(x, exp( - x), ylab = "survivor function", type = "l", lty = 4) 
 title(main = "Compare Survivor Functions    ") 
 lines(x, Sl) 
 plot(x, y/Sl, ylim = c(0, 1.1), ylab = "hazard function", type = "l") 
 lines(x, he, lty = 4) 
 title(main = "Compare Hazard Functions    ") 
 plot(x, x, ylab = "cum haz function", type = "l", lty = 4) 
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 lines(x, - log(Sl)) 
 title(main = "Compare Cum. Hazard Functions    ") 
 SSl <- exp(mu + 0.5 * sig) * (1 - pnorm(x - sig)) - exp(mu + sig * x) *  
(1 - pnorm(x)) 
 Ll <- SSl/Sl 
 a <- max(Ll) 
 b1 <- min(x) 
 b2 <- max(x) 
 plot(x, Ll, ylim = c(0, 1.5 * a), ylab = "expected resid. life", type = "l") 
 lines(x, he, lty = 4) 
 title(main = "Compare E{Residual Life}    ") 
 x <- c(0, 1, 1, 0, 0) 
 y <- rev(x) # plot(box(), xlab = "", ylab = "", axes = F) 
 par(mar = c(4.9, 3, 3.8, 0.9)) 
 plot(x, y, type = "l", xlab = "", ylab = "", axes = F) 
 lines(c(0, 0), c(1, 0), lty = 1) 
 lines(c(0, 1), c(1, 1), lty = 4) #text(0.4, 0.4, Ltext) 
 title(main = "Legend") 
 par <- par1 
 leg.names <- c("Lognormal(0, 1) ", "    mean = 1.65   stdev  =  1.68", 
"Exponential(1) ", 
  "    mean  = 1        stdev  =  1") 
 legend(locator(1), leg.names, lty = c(1, 0, 4, 0))} 
 
 
The following code produces Figure 3.2. Once plotted the user must click on the 
legend box in order to place information there and close out the function. 
 
wei1.gam 
function(alph = 0.75, beta = 2) 
{# fname is wei1.gam 
# survival functions plotted to compare Weibull(3/4, 2) w/gamma(.72, rate= .28) 
# gamma parameters are mle's from simulated rweibull(200, 3/4, 2) 
 x <- c(0.01, seq(0.02, 15, 0.08)) 
 y <- dweibull(x, 0.75, 2) 
 Sw <- 1 - pweibull(x, 0.75, 2) 
 Sg <- 1 - pgamma(x, 0.72, 0.28) 
 yy <- dgamma(x, 0.72, 0.28) 
 par1 <- par 
 par(mfrow = c(3, 2)) 
 plot(x, y, ylim = c(0, 1.45), ylab = "density function", type = "l") 
 lines(x, yy, lty = 4) 
 title(main = "Compare Density functions    ") 
 plot(x, Sw, ylab = "survivor function", type = "l") 
 title(main = "Compare Survivor Functions    ") 
 lines(x, Sg, lty = 4) 
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 plot(x, y/Sw, ylim = c(0, 1.45), ylab = "hazard function", type = "l") 
 lines(x, yy/Sg, lty = 4) 
 title(main = "Compare Hazard Functions    ") 
 plot(x,  - log(Sw), ylab = "cum haz function", type = "l", ylim = c(0, 5)) 
 lines(x,  - log(Sg), lty = 4) 
 title(main = "Compare Cum. Hazard Functions    ") 
 SSw <- (8/3) * gamma(4/3) * (1 - pgamma((0.5 * x)^0.75, 4/3)) 
 Lw <- SSw/Sw 
 plot(x, Lw, ylab = "expected resid. life", type = "l") 
 SSg <-  - x * Sg + (0.72/0.28) * (1 - pgamma(x, 1.72, 0.28)) 
 Lg <- SSg/Sg 
 lines(x, Lg, lty = 4) 
 title(main = "Compare E{Residual Life}    ") 
 x <- c(0, 1, 1, 0, 0) 
 y <- rev(x) # plot(box(), xlab = "", ylab = "", axes = F) 
 par(mar = c(4.9, 3, 3.8, 0.9)) 
 plot(x, y, type = "l", xlab = "", ylab = "", axes = F) 
 lines(c(0, 0), c(1, 0), lty = 1) 
 lines(c(0, 1), c(1, 1), lty = 4) #text(0.4, 0.4, Ltext) 
 title(main = "Legend") 
 par <- par1 
 leg.names <- c("Weibull(0.75, 2) ", "    mean = 1.84   stdev  =  2.33", 
"Gamma(.72, .28) ", "    mean = 2.57   stdev  =  3.03") 
 legend(locator(1), leg.names, lty = c(1, 0, 4, 0))} 
 
 
The following function produces Figure 3.3. Once plotted the user must click on the 
legend box in order to place information there and close out the function. 
 
wei2.gam 
function(alph = 2, beta = 2) 
{# fname is wei2.gam 
# survival functions plotted to compare Weibull(2, 2) w/gamma(3.75, rate = 2) 
# gamma parameters are close to the mle's from simulated rweibull(200, 2, 2) 
 x <- seq(0, 5, 0.025) 
 y <- dweibull(x, 2, 2) 
 Sw <- 1 - pweibull(x, 2, 2) 
 Sg <- 1 - pgamma(x, 3.75, 2) 
 yy <- dgamma(x, 3.75, 2) 
 par1 <- par 
 par(mfrow = c(3, 2)) 
 plot(x, y, ylim = c(0, 0.48), ylab = "density function", type = "l") 
 lines(x, yy, lty = 4) 
 title(main = "Compare Density functions    ") 
 plot(x, Sw, ylab = "survivor function", type = "l") 
 title(main = "Compare Survivor Functions    ") 
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 lines(x, Sg, lty = 4) 
 plot(x, y/Sw, ylab = "hazard function", type = "l") 
 lines(x, yy/Sg, lty = 4) 
 title(main = "Compare Hazard Functions    ") 
 plot(x,  - log(Sw), ylab = "cum haz function", type = "l") 
 lines(x,  - log(Sg), lty = 4) 
 title(main = "Compare Cum. Hazard Functions    ") 
 SSw <- gamma(0.5) * (1 - pgamma((0.5 * x)^2, 0.5)) 
 Lw <- SSw/Sw 
 yM <- max(Lg) 
 SSg <-  - x * Sg + (3.75/2) * (1 - pgamma(x, 4.75, 2)) 
 Lg <- SSg/Sg 
 ym <- min(Lw) 
 plot(x, Lw, ylab = "expected resid. life", type = "l", ylim = c(ym, yM)) 
 lines(x, Lg, lty = 4) 
 title(main = "Compare E{Residual Life}    ") 
 x <- c(0, 1, 1, 0, 0) 
 y <- rev(x) # plot(box(), xlab = "", ylab = "", axes = F) 
 par(mar = c(4.9, 3, 3.8, 0.9)) 
 plot(x, y, type = "l", xlab = "", ylab = "", axes = F) 
 lines(c(0, 0), c(1, 0), lty = 1) 
 lines(c(0, 1), c(1, 1), lty = 4) #text(0.4, 0.4, Ltext) 
 title(main = "Legend") 
 par <- par1 
 leg.names <- c("Weibull(2, 2) ", "   mean = 1.77   stdev = 2.18", "Gamma(3.75, 2) 
", "   mean = 1.88   stdev = 0.97") 
 legend(locator(1), leg.names, lty = c(1, 0, 4, 0))} 
 
wei.cost 
function(rat, alpha, beta) 
{# fname is wei.cost 
# rat is the ratio of 
 xx <- ceiling(log(500)) 
 x2 <- beta * xx^(1/alpha) 
 x <- seq(0, x2, length = 200) 
 y <- (x/beta)^alpha 
 cost <- ((alpha/beta) * (1 + rat * pgamma(y, 1)))/(gamma(1/alpha) * pgamma(y, 
1/alpha)) 
 m <- min(cost) 
 M <- max(x) 
 ind <- match(m, cost) # print(x[ind], m) 
# plot(x, cost, type = "l") 
 out <- c(ind, M, m) 
 out} 
 
gam.cost 
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function(rat, alpha, lam) 
{# fname is gam.cost 
# rat is the ratio 
# alpha & lam are the parameters of the gamma distribution 
# output is the min cost planned replacement policy 
 x2 <- alpha/lam + (3 * sqrt(alpha))/lam 
 x <- seq(0.02, x2, length = 200) 
 Sg <- 1 - pgamma(x, alpha, lam) 
 cost <- (1 + rat * pgamma(x, alpha, lam))/(x * Sg + (alpha/lam) * pgamma(x,  
1 + alpha, lam)) 
 m <- min(cost) 
 M <- max(x) 
 ind <- match(m, cost) 
 x0 <- round(x[ind], 2) 
 print(c(ind, x0, m)) # plot(x, cost, type = "l") 
 out <- c(ind, x0, M, m) 
 out} 
 
NormCT 
function(x, alph, graph = T) 
{# fname is NormCT 
# this is a plotting function that produces 1-alph level 
# confidence trapezoids for (mu, sig) for normal data x. 
# If graph = F then the output is a row matrix containing 
# the vertices of the trapezoid. 
 out <- NULL 
 n <- length(x) 
 alph1 <- 1 - sqrt(1 - alph) 
 z0 <- - qnorm(alph1/2) 
 k1 <- qchisq(alph1/2, n - 1) 
 k2 <- qchisq(1 - alph1/2, n - 1) 
 SS <- (n - 1) * var(x) 
 xb <- mean(x) 
 s <- stdev(x) 
 sigl <- sqrt(SS/k2) 
 sigu <- sqrt(SS/k1) 
 xlmin <- xb - (z0 * sigl)/sqrt(n) 
 xlmax <- xb + (z0 * sigl)/sqrt(n) 
 xumin <- xb - (z0 * sigu)/sqrt(n) 
 xumax <- xb + (z0 * sigu)/sqrt(n) 
 xx <- c(xlmin, xlmax, xumax, xumin, xlmin) 
 yy <- c(sigl, sigl, sigu, sigu, sigl) 
 if(graph == T) { 
  plot(xx, yy, type = "l", xlab = "mu", ylab = "sigma") 
  title(main = "Confidence Trapezoid for Normal Distribution") 
  points(xb, s)} 
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 else out <- rbind(xx, yy) 
 return(out)} 
 
 
area.comp 
function(x, w, u0 = 0, y0 = 0, rnd = 4) 
{# fname is area.comp 
# Computes the signed net areas separating the empirical 
# cdf's of the ordered sets x and w. These cdf's are polygonal 
# curves which are connected with straight line segments. The 
# two data sets are of the same length. It seems necessary to 
# do some rounding because of "fuzz" problems; hence the input 
# rounding quantity, "rnd". 
 n0 <- length(x) 
 x <- round(x, rnd) 
 w <- round(w, rnd) 
 out <- matrix(0, ceiling((1 + n0)/2), 5) 
 jj <- 1 
 repeat { 
  out[jj,  ] <- seg.comp(x, w, u0, y0, n0, jj) 
  u0 <- round(out[jj, 4], rnd) 
  tmp <- round(out[jj, 5], rnd) 
  y0 <- tmp - floor(tmp) 
  x <- x[x > u0] 
  w <- w[w > u0] 
  n1 <- length(x) 
  n2 <- length(w) 
  if(n1 == 0 | n2 == 0) 
   break 
  if(all(x == w)) 
   break 
  jj <- jj + 1} 
 out <- out[1:jj,  ] 
 out} 
 
 
seg.comp 
function(x, w, u0, y0, n0, jj) 
{# fname is seg.comp 
# Computes the areas under the polygonal curves, between 
# two knots, and returns their difference (signed). A flag 
# is set = 0 if the x cdf is above the w cdf, and set = 1 
# otherwise. The x and w vectors are mono increasing; n is 
# the number of points in the full sets. The initial points  
# (u0, y0) mark the beginning of the segment; the crossover 
# point (u1, y1) is the segment end and is computed internally; 
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# when segment is open ended, it is (x[n], n). The marker f1 
# is set to one when the segment is close on the right. 
# f2 = 1 means the right knot is not a data point. 
 n <- f <- y1 <- length(x) # initialization 
 f1 <- flag <- rect <- f2 <- 0 
 u1 <- max(x[1], w[1]) 
 ss <- sort(c(x, w)) # first look for superpositions and remove 
 repeat { 
  if(x[1] != w[1]) 
   break 
  u0 <- x[1] 
  x <- x[-1] 
  w <- w[-1] 
  ss <- ss[ - (1:2)] 
  n <- f <- n - 1 
  if(n == 1 | n == 0) { 
   f <- 1 
   y1 <- 1 
   break} 
  else { 
   if(x[1] == w[1]) { 
    ss <- ss[ - (1:2)] 
    u0 <- x[1] 
    x <- x[-1] 
    w <- w[-1] 
    n <- f <- y1 <- length(x) 
    if(n == 0) 
      break }}} 
# Set the flag & initiate 
 if(n > 0) 
  j <- 1:n 
 if(length(ss) > 0) { 
  ind <- j[x[j] >= w[j]] 
  if(w[1] == ss[1]) { 
   flag <- 1 
   ind <- j[w[j] >= x[j]] } 
  if(is.na(ind[1]) == F) { 
   f1 <- 1 
   f <- ind[1]}} 
# initialize the end corrections and the center computations 
 area1 <- area2 <- adj1 <- adj2 <- 0 
 u1 <- max(x[f], w[f]) 
 y1 <- f 
 if(f > 1 & f1 == 1) { 
  P1 <- c(x[(f - 1):f]) 
  P2 <- c(w[(f - 1):f]) 
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  tout <- sol.pt(P1, P2) 
  u1 <- tout[1] 
  y1 <- tout[2] + f 
  if(x[f] != w[f]) { 
   f2 <- 1 
   f <- f - 1}} 
# prepare for the open ended case 
 if(n > 0) {rect <- f * abs(x[n] - w[n]) 
  j <- 1:n 
  area1 <- ((x[1] - u0) * (1 + y0))/2 
  area2 <- ((w[1] - u0) * (1 + y0))/2 
  if(f > 1) {area1 <- area1 + ((f1 * f2 * (u1 - x[f - 1]) * (y1 + f - 1))/2) 
   area2 <- area2 + ((f1 * f2 * (u1 - w[f - 1]) * (y1 + f - 1))/2) 
   ff <- f # prep adjustment for existence of interior part of segment 
   if(x[f] != w[f]) 
    ff <- ff - 1 
   adj1 <- 0.5 * (x[ff] * (2 * ff + 1) - x[1]) - sum(x[1:ff]) 
   adj2 <- 0.5 * (w[ff] * (2 * ff + 1) - w[1]) - sum(w[1:ff]) } 
  area1 <- area1 + (1 - f1) * (1 - flag) * rect 
  area2 <- area2 + (1 - f1) * flag * rect } 
 net <- (area1 + adj1 - area2 - adj2)/n0 
 out <- c(net, flag, f, u1, y1) 
 names(out) <- c("net", "flag", "seg.length", "hend", "vend") 
 out} 
 
 
 
sol.pt 
function(P1, P2) 
{# fname is sol.pt 
# finds the crossover solution point 
# for two cdf's that have the same number 
# of pts in the horiz & equi spaced in the vertical. 
# If both delx and delq are zero, then y is set to 
# y = -1. Otherwise 0 < = y < 1 
 x1 <- P1[1] 
 x2 <- P1[2] 
 w1 <- P2[1] 
 w2 <- P2[2] 
 delx <- x2 - x1 
 delw <- w2 - w1 
 if(delx == 0 & delw == 0) { 
  x <- x1 
  y <- -1 } 
 if(delx == 0 & delw > 0) { 
  x <- x1 
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  y <- (x - w1)/delw } 
 if(delx > 0 & delw == 0) { 
  x <- w1 
  y <- (x - x1)/delx } 
 if(delx > 0 & delw > 0) { 
  x <- (x1 * delw - w1 * delx)/(delw - delx) 
  y <- (x - w1)/delw 
  if(x1 == w1) 
   y <- 0 } 
 out <- c(x, y) 
 out} 
 
sol.pt 
function(P1, P2) 
{# fname is sol.pt 
# finds the crossover solution point 
# for two cdf's that have the same number 
# of pts in the horiz & equi spaced in the vertical. 
# If both delx and delq are zero, then y is set to 
# y = -1. Otherwise 0 < = y < 1 
 x1 <- P1[1] 
 x2 <- P1[2] 
 w1 <- P2[1] 
 w2 <- P2[2] 
 delx <- x2 - x1 
 delw <- w2 - w1 
 if(delx == 0 & delw == 0) { 
  x <- x1 
  y <- -1 } 
 if(delx == 0 & delw > 0) { 
  x <- x1 
  y <- (x - w1)/delw} 
 if(delx > 0 & delw == 0) { 
  x <- w1 
  y <- (x - x1)/delx} 
 if(delx > 0 & delw > 0) { 
  x <- (x1 * delw - w1 * delx)/(delw - delx) 
  y <- (x - w1)/delw 
  if(x1 == w1) 
   y <- 0} 
 out <- c(x, y) 
 out} 
 
Newt.wei 
function(x, t, param, ep = 0.0001) 
{# fname is Newt.wei 
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# Newton-Raphson method, then bisection search used to find mle 
# for the Weibull distribution using the extreme value distribution technique. 
# Data input is (x, t); param initialization is (u, b), b > 0 
# output is (u, b, alph, beta). r is cardinality of uncensored set 
 r <- length(x) 
 v <- log(x) 
 vb <- mean(v) 
 lt <- log(t) 
 b <- param[2] 
 u <- param[1] 
 vv <- c(v, lt) 
 b2 <- b1 <- b 
 h1 <- h2 <- 0 
 j <- 1 
 flag <- 1 
 repeat { 
  if(flag == 1) { 
   D <- sum(exp(vv/b)) 
   N <- sum(vv^2 * exp(vv/b)) 
   A <- sum(vv * exp(vv/b)) 
   h <- A/D - b - vb 
   hp <-  - N/(D * b^2) + A^2/(D * b)^2 - 1 
   b <- b1 - h/hp 
   if(b <= 0) 
    b <- 0.01 
   if(max(abs(h), abs(b - b1)) < ep) 
    break 
   if(j/2 != round(j/2)) { 
    b1 <- b 
    h1 <- h } 
   if(j/2 == round(j/2)) { 
    b2 <- b 
    h2 <- h } 
   j <- j + 1 
   if(sign(h2 * h1) < 0) 
    flag <- 0} 
  if(j == 25) 
   break 
  if(flag == 0) { 
   b <- (b1 + b2)/2 
   D <- sum(exp(vv/b)) 
   A <- sum(vv * exp(vv/b)) 
   h <- A/D - b - vb 
   if(sign(h * h1 < 0)) { 
    h2 <- h 
    b2 <- b } 
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   if(sign(h * h2 < 0)) { 
    h1 <- h 
    b1 <- b } 
   if(max(abs(h), abs(b - b1)) < ep) 
    break 
   j <- j + 1 
   if(j == 50) 
    break} } 
 u <- b * log(D/r) 
 alph <- 1/b 
 beta <- exp(u) 
 out <- c(u, b, alph, beta, flag) 
 names(out) <- c("u", "b", "alph", "beta", "flag") 
 return(out)} 
 
 
exp.lnorm 
function(mu = 0, sig = 1) 
{# fname is exp.lnorm 
# survival functions plotted to compare Exp(1) w/lognormal(mu, sig) 
 x <- c(seq(0.02, 0.55, 0.01), seq(0.56, 3.6, 0.02)) 
 y <- dnorm((log(x) - mu)/sig)/(x * sig) 
 Sl <- 1 - pnorm(log(x) - mu)/sig 
 he <- rep(1, length(x)) 
 xx <- x[ - (1:27)] 
 Se <- exp( - xx) 
 yy <- exp( - xx) 
 split.screen(c(3, 2)) 
 oldpar <- par() 
 on.exit(par(oldpar)) 
 screen(1) 
 par(cex = 0.8, mar = c(5, 6, 4, 2)) 
 plot(x, y, ylim = c(0, 0.75), ylab = "density function", type = "l") 
 lines(xx, yy, lty = 4) 
 title(main = "Compare Density functions    ") 
 screen(2) 
 par(cex = 0.8, mar = c(5, 6, 4, 2)) 
 plot(x, exp( - x), ylab = "survivor function", type = "l", lty = 4) 
 title(main = "Compare Survivor Functions    ") 
 lines(x, Sl) 
 screen(3) 
 par(cex = 0.8, mar = c(5, 6, 4, 2)) 
 plot(x, y/Sl, ylim = c(0, 1.1), ylab = "hazard function", type = "l") 
 lines(x, he, lty = 4) 
 title(main = "Compare Hazard Functions    ") 
 screen(4) 
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 par(cex = 0.8, mar = c(5, 6, 4, 2)) 
 plot(x, x, ylab = "cum haz function", type = "l", lty = 4) 
 lines(x,  - log(Sl)) 
 title(main = "Compare Cum. Hazard Functions    ") 
 screen(5) 
 par(cex = 0.8, mar = c(5, 6, 4, 2)) 
 SSl <- exp(mu + 0.5 * sig) * (1 - pnorm(x - sig)) - exp(mu + sig * x) *  
(1 - pnorm(x)) 
 Ll <- SSl/Sl 
 a <- max(Ll) 
 b1 <- min(x) 
 b2 <- max(x) 
 plot(x, Ll, ylim = c(0, 1.5 * a), ylab = "expected resid. life", type = "l") 
 lines(x, he, lty = 4) 
 title(main = "Compare E{Residual Life}    ") 
 screen(6) 
 par(cex = 0.8, mar = c(5, 6, 4, 2)) 
 x <- c(0, 1, 1, 0, 0) 
 y <- rev(x) # plot(box(), xlab = "", ylab = "", axes = F) 
 plot(x, y, type = "n", xlab = "", ylab = "", axes = F) ## lines(c(0, 0), c(1, 0), 
lty = 1) 
### lines(c(0, 1), c(1, 1), lty = 4) #text(0.4, 0.4, Ltext) 
 leg.names <- c("Lognormal(0, 1)", "mean = 1.65", "sd = 1.68", "Exponential(1)", 
"mean = 1", "sd = 1", "", "") 
 leg.xy <- locator(1) 
 legend(leg.xy$x, leg.xy$y, leg.names, lty = c(1, 0, 0, 4, 0, 0, 0, 0), cex = 1) 
 close.screen(all = T)} 
 
ext.newt 
function(input, dat, ep = 10^-4) 
{# fname is ext.newt 
# Newton's method applied to extreme value distribution 
 u <- u0 <- input[1] 
 b <- b0 <- input[2] 
 x <- dat[dat[, 2] == 1, 1] 
 a <- dat[, 2] 
 w <- a * dat[, 1] + (1 - a) * dat[, 3] 
 r <- sum(a) 
 g0 <- 0 
 repeat {g <- sum(w * exp(w/b))/sum(exp(w/b)) - b - mean(x) 
  g1 <- sum(w^2 * exp(w/b))/sum(exp(w/b)) 
  g2 <- sum(w * exp(w/b))/sum(exp(w/b)) 
  gp <-  - (g1 + g2^2 - 1)/b^2 
  b <- b0 - g/gp 
  if(b < 0) 
   b <- 0.2 



 81

  if(max(abs(b - b0), abs(g - g0)) < ep) 
   break 
  g0 <- g 
  b0 <- b } 
 u <- b * log(sum(exp(w/b))/r) 
 return(c(u, b))} 
 
cost.comp 
function(rat) 
{# fname is cost.comp 
# Compares the cost of planned replacement curves of our two competing IFR models 
Weibull(2, 2) & gamma(3.75, rate = 2) 
# Three sets of curves are generated, one for each of the n ratios in the input rat 
 n <- length(rat) 
 aw <- 2 
 bw <- 2 
 xx <- log(500) 
 x2 <- 0.25 * bw * xx * (1/aw) 
 ag <- 3.75 
 lam <- 2 
 x1 <- ag/lam + (1 * sqrt(ag))/lam 
 x3 <- max(x1, x2) # range of variate values 
 x <- seq(0, x3, length = 200) 
 y <- (x/bw)^aw #y <- dweibull(x, 2, 2) 
 Sw <- 1 - pweibull(x, 2, 2) 
 Sg <- 1 - pgamma(x, 3.75, 2) #yy <- dgamma(x, 3.75, 2) 
 par1 <- par 
 par(mfrow = c(n, 1)) 
 numw <- (aw/bw) * (1 + outer(rat, pgamma(y, 1), "*")) 
 denw <- matrix(gamma(1/aw) * pgamma(y, 1/aw), byrow = T, nrow = n, ncol = 
200) 
 costw <- numw/denw 
 numg <- 1 + outer(rat, pgamma(x, ag, lam), "*") 
 deng <- matrix(x * Sg + (ag/lam) * pgamma(x, 1 + ag, lam), byrow = T, nrow = 
n, ncol = 200) 
 costg <- numg/deng 
 for(j in 1:n) { 
  plot(x, costw[j,  ], ylab = c("rel. cost"), xlab = c("time in service"), type = 
"l") 
  lines(x, costg[j,  ], lty = 4) 
  title(main = paste("ratio = ", rat[j])) } 
 mcostw <- apply(costw, 1, min) 
 mcostg <- apply(costg, 1, min) 
 out <- rbind(mcostw, mcostg) #x <- c(0, 1, 1, 0, 0) 
# y <- rev(x) # plot(box(), xlab = "", ylab = "", axes = F) 
# par(mar = c(4.9, 3, 3.8, 0.9)) 
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# plot(x, y, type = "l", xlab = "", ylab = "", axes = F) 
# lines(c(0, 0), c(1, 0), lty = 1) 
# lines(c(0, 1), c(1, 1), lty = 4) #text(0.4, 0.4, Ltext) 
# title(main = "Legend") 
 par <- par1 #leg.names <- c("Weibull(2, 2) ", "   mean = 1.77   stdev = 2.18", 
# "Gamma(3.75, 2) ", "   mean = 1.88   stdev = 0.97") 
# legend(locator(1), leg.names, lty = c(1, 0, 4, 0)) 
 out} 
 
gam.cost 
function(rat, alpha, lam) 
{# fname is gam.cost 
# rat is the ratio 
# alpha & lam are the parameters of the gamma distribution 
# output is the min cost planned replacement policy 
 x2 <- alpha/lam + (3 * sqrt(alpha))/lam 
 x <- seq(0.02, x2, length = 200) 
 Sg <- 1 - pgamma(x, alpha, lam) 
 cost <- (1 + rat * pgamma(x, alpha, lam))/(x * Sg + (alpha/lam) * pgamma(x,  
1 + alpha, lam)) 
 m <- min(cost) 
 M <- max(x) 
 ind <- match(m, cost) 
 x0 <- round(x[ind], 2) 
 print(c(ind, x0, m)) #plot(x, cost, type = "l") 
 out <- c(ind, x0, M, m) 
 out} 
 

      ks.dist 
function(dat, mod) 
{# fname is ks.dist 
# the distance between the data cdf and the model cdf 
# using the Kolmorgoroc-Smirnov distance function. The 
# values of mod must be the cdf of the model evaluated 
# at the values of dat. 
 n <- length(dat) 
 dat <- sort(dat) 
 mod <- sort(mod) 
 p <- (1:n)/n 
 pl <- c(0, p[ - n]) 
 ks <- max(abs(c(mod - p, pl - mod))) 
 return(ks)} 
 
Gsq.norm 
function(x, y, xb, s, n) 
{# fname is Gsq.norm 
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# This program computes the vertical component, z, of the 
# G-squared statistic over the grid work that results 
# from the x, y values, using the normal likelihood 
# function. Thus, one can construct contour plots of 
# (x, y, z). xb and s are the mle's of mu and sigma from 
# a random sample of size n. x values go with mu; 
# y with sigma 
 SS <- n * s^2 
 tmp1 <- 2 * n * log(y/s) + SS/y^2 - n 
 tmp2 <- n * outer((xb - x)^2, y^2, "/") 
 zz <- tmp1 + t(tmp2) 
 z <- t(zz) 
 return(z)} 
 
 
Gsq.gam 
function(dat, x, y, ah, bh, n) 
{# fname is Gsq.gam 
# This program computes the vertical component, z, of the 
# G-squared statistic over the grid work that results 
# from the x, y values, using the gamma(alpha, beta)likelihood 
# function. Thus, one can construct contour plots of 
# (x,y,z). ah and bh are the mle's of alpha and beta from 
# a random sample, dat, of size n. x values go with alpha; 
# y with beta 
 xb <- mean(dat) 
 blx <- mean(log(dat)) 
 za <-  - lgamma(ah) - ah * log(bh) + ah * blx - ah # scalar term 
 z1 <- lgamma(x) - x * blx # vector terms 
 z21 <- outer(x, log(y), "*") 
 z22 <- xb * matrix(1/y, length(x), length(y), byrow = T) 
 zz <- za + z1 + z21 + z22 
 out <- 2 * n * zz 
 return(out)} 
 
Gsq.wei 
function(dat, x, y, ah, bh, n) 
{# fname is Gsq.wei 
# This program computes the vertical component, z, of the 
# G-squared statistic over the grid work that results 
# from the x, y values, using the Weibull likelihood 
# function. Thus, one can construct contour plots of 
# (x, y, z). ah and bh are the mle's of shape and scale 
# a random sample, dat, of size n. x values go with ah; 
# y with bh 
 blx <- mean(log(dat)) 
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 z0 <- log(ah) - ah * log(bh) + ah * blx - 1 # scalars 
 z1 <- log(x) + x * blx # vectors 
 v <- outer(x, log(y), "*") 
 xba <- apply(outer(dat, x, "^"), 2, sum)/n 
 zz <- z0 - z1 + v + xba * exp( - v) 
 z <- 2 * n * zz 
 return(z)} 
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